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Thechangein T in one year (~ 365 days) is 10X 1085, i.e. 1055,

5
~ Thechange inadayisdT:%S—s =27 x 10-8s.

Hence, thechangeinrotational RE. will ke

4?2 x (9.7 x 1037 kgm?) x (2.7 x 10-3s)

Ak = - (86400s)?

=-16X10"7kg m?s-2

Sotherotational energy decreasesby 1.6 x 1017 J per day.



UNIT 10 MOTION IN NON-INERTIAL
FRAMES OF REFERENCE

Structure
101 Introduction
Objectives
102  Non-Inertial Frame of Reference

Mation Observed from a Non-Inertial Frame
Newton's Second Law and Inertial Forces

Weightlessness
10.3 Rotating Frame of Reference

Time Derivatives in Inertial and Rotating Frames
Centrifugal Force

Coriolis Force
104 TheEarth asa Rotating Frame of Reference

The Variation of g with Latitude
Motion on the Rotating Earth

Foucault's Pendulum
10,5 Summary
106 Terminal Questions

10.7 Answers

10.1 INTRODUCTION

In the previous unit you have read about rigid body dynamics. The present unit will be the
final one of our Elementary Mechanics course. We had introduced the concept of frame of
reference in the very first unit of Block . In Unit 2 of Block 1 weintroduced the idea of
inertial and non-inertial observers. So far we have explained motion from the point of view
of inertial observers. But asamatter of fact we live on a frame of reference (theearth) which
isnon-inertial. Moreover, we shall see that certain problems can be answered quite elegantly
if we take the point of view of a non-inertial observer. So in this unit weshall study the
description of motion relative to a non-inertial frame of reference. First we shall study what
ismeant by a non-inertial frame of reference.

You must have had the following experiences while travelling-in a bus. You fal backward
when the bus suddenly accelerates and forward when it decelerates. When the bus takes a turn
you have sensation of an outward force. We shall explain thesefeatures by introducing the
concept of inertial forces. Thereby we shall see how Newton's second law of motion gets
'modified in anon-inertial frame. This will be used to develop the concept of weightlessness.

Frames attached with rotating bodies like a merry-go-round, the earth and so onform the
most interesting examples of non-inertial frames of reference. We shall derive the equation of
motion of abody in such a frame of reference. Thereby we shall come across two inertial
forces, namely, the centrifugal force and the Coriolisforce. The former can be used to
explain theaction of acentrifuge. We will study a variety of applications of theseforcesin
connection with the earth asa non-inertial frame of reference. Centrifugal forcefinds
application in studying the variation of g with the latitude of a place.

Several natural phenomena like erosion of the banks of rivers, cyclones etc. can be explained
using the concept of Coriolisforce. Finally we shall study about Foucault's Pendulum
experiment with a view to establishing thefact that the earth rotates about an axis passing
through the poles.
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Objectives

After studying this unit you should be able to

e distinguish between an inertial and a non-inertial frame of reference

e Wwritedown the equation of motion of abody in anon-inertial frame of reference
identify the inertial forces appearing in any non-inertial frame of reference

solve problems on motion from the point of view of a non-inertial frame of reference.

10.2 NON-INERTIAL FRAME OF REFERENCE

In Sec. 2.2.1 of Block 1 we have discussed about inertial and non-inertial observers. You
may recall that acar moving with aconstant velocity and a man standing on the road are
inertial with respect to each other. Let us now specify inertial and non-inertial frames o
reference. Refer to Fig. 10.1.

Pig. 10.1: §and S, areinertial with respect to each other. Sand Sg are non-inertial with respect to each other.

M isaperson standing on the road. We take some point on the person of M as origin and
definea three-dimensional Cartesian coordinate system S Let Car A-move with a uniform
velocity and Car B accelerate with respect to §. Let us now choose a point on each of Car A
and B as-origin and define the coordinate systems S, and Sj.

The person will locate any object with reference to the coordinate system S. Thedriversin
the cars will locate objects with respect to S, and Sg. They may choose a common zero on
the time scale. Then you may recall from Sec. 1.2 of Block 1 that S, S4 and Sg areframes
of reference. Sand S4 are two inertial frames of reference with respect to each other. And §
and Sp are two non-inertial frames of reference with respect to each other. In other words, the
frames d reference novi ng with uniform velocity with respect to each other areinertial and
those accel erating wirh respect to each other are called non-inertial. For the sake of
convenience, from now onward we shall mostly use the word ‘frame' in placeof thephrase
"frameof reference”. Let us now discuss some examplesof inertial and non-inertial frames of
reference.

Consider achild sitting on arevolving merry-go-roundin a park. A frame attached to'afixed
structure S in the park and the child are non-inertial with respect to each other because the
merry-go-round has an acceleration due to rotation. Likewise the frame attached to a ball
thrown up intheair by achild and S are non-inertial with respect to each other asthe ball
has an acceleration equal to g. The frame attached to some bench in the park and S are
inertial with respect to each other as the bench is at rest with respect to the fixed structure.
Similarly, theframe attached with a child walking leisurely (i.e. with alow uniform speed)
and S are inertia with respect to each other.

Y ou may now liketo work out a simple SAQ to determine the nature of aframe, i.e.
whether a frame isinertial or non-inertial with respect to any given frame.



4 sAQ1
Stategivingreasons the natureof theframeattached

iy toaca rrloving along acurved path with a uniform speed with respect to a frame
attached to aman standing on theroad,

ii) toafalingrain.drop duringadrizzle (whenit has attained a terminal velocity) with
respect to a frame atached to the ground,

iii) toan eectron moving in a uniform magneticfield produced by an electromagnet, with
respect to a frameattached with apole pieceof the magnet.

Soyou havelearnt how to identify inertial and non-inertial frames. Recall from what you
havestudied in Sec. 221 of Block 1 that for many purposes aframefixed an thesurfaced
earth can beconsidered asinertial. In all our previous unitswe had been analysing maotion
from the point of view of an inertial frame.

Weshall seethat certain problems of rotational dynamics becomesimpler when analysed
from the point of view of a non-inertialframe. You may recall from Sec. 2.2.1 that
Newton's first law of motion holdsonly in an inertial frame: Y ou also know that thefirst
law can be obtained from the second law. So wecan say that the second law also holdsonly
inan inertial frame. Let us now see how the second law will be modified for a non-inertia

observer.

10.2.1° Motion Observed from a Nan-Inertial Frame

L et ustake asimpleexample. Suppose you are standing on a road and observe acar about to
start. We know that in order to start, a car has to accelerate. You would seethat aperson
sitting inside the car gets pressed back against theseat hy the accel eration. How would you
explain this? Sinceyou are an inertia observer with respect to another inertial observer, you
will explain thisasfollows: This happensdueto inertiaof rest. The hips and the waist form
partof the body of the man that isin direct contact with theseat of the car. The head and the
torso ae not in direct contact. This portion has a tendency to remain a rest. So aslong as
thecar accelerates, the torso and the head tend to remain behind the waist ad the hips. Thus,
the person in the car gets pressed back against theseat.

Now, let ustry to visualisethe situation in aframeS' attached to thecar. Due to the
acceleration of thecar, S"is non-inertial with respect to the person et rest. With respect to §”
theportion of the person's body that is in direct contact with the seat of thecar isat rest.

T heother portionfalls back. How can this behaviour be explained from §*? We can say that
in §'someforce acts on the person in adirection opposite to the accelerationof the car. This
force neutralises the accelerating force on-the waist and hips and causes the other part to fall

back.

"~ But wheredoes thisforcearisefrom?Wehave seen in Sec. 5.5 of Block 1 that forces occur
either by way of contact (e.g. push, pull, friction) or due to some action at a distance (e.g.
~ gravitational or electromagneticfield). But theforce here doesnot have either of these asits
origin. Moreover, such aforce does not exist from the point o view o an inertial observer.
However, thisforceis very much real from the point of view of S'. Thisiscalledthe
inertial force. From the example we havejust now considered you can understand that the
magnitude of thisforceisequal to theacceleratingforce and it is directed oppositeto it.
However, we shall quantify thisforce very soon in this section.

Continuing with the example, we find that in 5* the man is held at rest by aforce exerted on
him by the back of the seat. If you were to remain at rest or in uniform motion with respect
to aninertia frameof reference, no forcewould be needed. Butin order to ke a rest in a non-
inertial frame of referencelikethat of the acceleratingcar, someforceisrequired. This
implies that the second law of motion will take adifferent form in a non-inertia frame. We
shall now study that. In the process, we shdl beable to quantify 'inertial force,

Motion in Non-Inertial
Frames of Reference
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Fig. 10.2; The frames of reference
d PandQ

The process of obtaining
accelerationsfrom the position
vectorsinvolves differentiationwith
repect to time, Incidentally. the time
intervals are, strictly speaking, not
the same in thetwo framesd P and
Q. However the mathematical
tregtment correspondging to unequal
timeintervalswill be very
complicated. Thisissuewill be
resolvedfor two ineriial and non-
inenial frames by studying,
respectively, the special arid general
theoriesd reativity. Far the sake of
simplicity herewe shall assume the
timeintervalsto beequal.
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10.2.2 Newton's Second Law and Inertial Forces

Suppose that two scientistsP and Q decideto observea seriesof eventssuch as the position
o abody d mass m asafunction of time. Each has his own set of measuring deyices and
each works,in his own laboratory. Let ussuppose that P has confirmed by performing some
experiments in his laboratory that the second law of motion holds there precisdy. His frame
o referenceis, therefore, inertial. How can P find out whether Q's frameisinertid or not?

As per convention let the fraries be defined by two Cartesian coordinate systems(Fig. 10.2)
with identical scale units. I n general, the coordinate systems do not coincide. Weshall
assume that noneof theframesis executinga rotation and that they are executing relative
motion with their corresponding axes aways parald to each other. L et the position vectors

of mber, ad r, with respect to 2 and Q, respectively.|f the originsof thetwo frames are
displaced by a vector R, then we havefrom Fig. 10.2

r,=r,-R. (10.1)

If Pseesm acceleratinga aratea, =1, heconcludesfromthe second law that thereis aforce
onm given by

F-p = ma,.

Q observesm to be accelerating at arate a, =¥ asif it were experiencing aforce

Fq =ma,
Let us now find out how Fq isrelated to theforcer. We know from Sec. 1.5 of Block i
that if £ be moving with a uniform velocity relativeto P, i.e. if £ isaso inertial, then
aq=a,,and

— _ _F.
Fq—maq-map— 4

So wefind that theforceis samein bath the frames. In other words, the equationsof motion
have the same form in both the frames.-So all inertial frames areequivalent. There isno
dynamical experiment that leadsusto prefer one inertialframefrom another.

L et usnow see what happensif Q were accel erating with respect to P. How about working
out therelation between F, and F, in this case?

SAQ 2
Find the relation between Fp and K, when the acceleration of Q with respecttoPisa?

Now that you havesolved SAQ 2, we can expresstherdation between F, and Fp as

F,=F,+F =ma, (10.2a)

where F = -ma. (10.2b)

Sowe are ableto preserve the relationship between the net force on theobjectand its,
acceleration. But the net force in the Q-frameis now made up of two parts: aforceF,, and

another force F’ equal to -ma. The latter originatesfrom thefact that the frame Q has an

acceleration a with respect to P. Thisforce F is cdled theinertial force. Its expressionis
given by Eq. 10.2b. Itsmagnitudeisequal to the product of the mass of the body and the
accelerationof the non-inertia frame. It is directed oppositeto the acceleration d the frames.
An important specia case o Eq.10.2a isthat in which theforce F, iszero. In sucha case
the body asobservedin Q, movesunder the action of the inertial force alone. Thesituation

of the torso and the head of thenan in thecar is very much like that. Let usnow work out
an exampleto understand themeaning o inertia force better.




Example 1 Motion in Non-Inertial
A smdl bal of mass m hangs from astring in acar (Fig. 10.3a) which acceleratesat a rate Frames of Reference
a. What angle does the string make with the vertical and what isthe valued tension in it?

T
1o

I
m

W
©)

(a)

Fig. 103 (a) A caraccelerating a theratea; (b) forcediagram with respect to an inertid frame; (c).force
diagram with respect to aframe acceleratingwith the Car.

We shdll analyse the problem both with respect to an inertial frame and in aframe
accelerating with thecar. Let the tensionin thestring be T and let it make an angle 0 with
thevertical.

Mation in inertial frame
Refer to Fig. 10.3b. With respect to an inertia frame the mass movesin thedirectiond

motion of the car with an acceleration a(a-—-af ). Thisiscaused by the tendon T and the
weight mg (g = —gfi\). There is no motion in they-direction.

A
s TcosBj +mg (—‘]I'\) =0 or T cosb=mg. (10.3a)
Equation of motion in thex-direction is given by
A
T sinb 14 =maforTsin6=ma . ) (10.3b)

From Egs. 10.3a and b, we get

a a
tan6== or O = tan"! (~) (10.3c)
4 g

adT = \[(T cos0)2 + (T sin®)?
W T=mVg?+a2. ‘ (10.3d)

Motion in ihe frame accelerating with the car

Refer to Fig 10.3c. In this frame apart from theforces T and mg thereisan inertia force ¥
arising out of the accelerationd the frame. With respect to thisframethe massis a rest,
ie. it isin equilibrium under the influencedf T, mgand F’:

L T+mg+F =0
or T00363 +Tsin69+mg(—1"\)+F'(—f)=0 !
ori (T cos 8 —mg) ?+(Tsin 6-F") Il\ =0
Tcosé—mg=0, ie Tcosé=mg (10.32)
au Tsin®-F' =0 or Tsin@=F.
F'is the magnitude of F and it isequal to ma. So wegqt
T sin0=na. (10.3b")

From Eqs, 11.32" and 10.3b" we get asin the previouscase
a
0 =tan! (E) o o » (10.3¢)

ad | T=mVg>+a® s - (10.3d) 85
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Sometimes the inertial force js called
'fictitiousforce' o 'pseudo-force'
seudo means faise).as it does not
g%se from any 6asc) interaction. But
these names are misleading as the

force actually exists for anon-inettial
observer.
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which areidentical with the valuesof 8 and T obtainedin Egs. 10.3¢ and 10.3d. In fact Eq.
10.34" is identical with Eqp. 10.32 and 10.3b’ is same as 10.3b. But there.is an element of
difference. Eqgs. 10.3a and 10.3a’ both occur asconditionsof equilibrium. But 10.3b occurs
as an equation of motion whereas 10.3b” arisesout of a condition of equilibrium.

Moreover, you must remember thet theinertial forcedoes not exist for theinertial observer.
Thisis becauseinertia forces experiencedin an accelerating frame of referencedo nat arise
from physical interactions. They originatein the acceleration of theframe of reference. So
for anon-inertial observer such forcesare present. For example, supposewe wish to keep an
object & rest in a non-inertia frame by tying it down with springs. Then these springs
would ke observed to elongate or contract in such away asto providean opposing force to
balancethe inertial force.

You may now like to work out an SAQ on the above concept.

SAQ 3
a) A glasshdf filled with water iskept on a horizontal tablein atrain. Will the free
surface of water remain horizontal asthe train starts?

b) A man of massm isstanding in alift which isaccelerating upwards at arate f. Write
down the expression for theinertia force acting on the man. Hence prove that hefeels
heavier than usual.

Now that you have worked out SAQ BEB), you will be able to appreciate the concept d
weightlessness.

10.2.3Weightlessness

Suppose that the lift was acceleratingdownwardsat the ratef (Fig. 10.4a). Then the net
force acting on the nan in the frame attached with thelift isgiven by

F=mg-mf

A
=m(g-T) jA, where J isthe unit vector in the vertically downward
direction.

Now if the lift werefalling freely, i.e.f = g, then F = 0. Thus, the force acting on the man
iszero. You know that the weight of an abject isdefined as the force needed to keep it at
rest. Soin thelift's frame, the reaction of F isthe weight of the man, sinceit is theforce
requiredta keep the man at rest. Since F is zero in afredly fallinglift, the manfeels
weightless. Likewise, every freely falling object is weightlessin aframe attached with itself

f

V-
- (a) - . : '(b),

Pig. 10.4: Objectsfed weightlessin afredy fallingframe ofr efer enceasthey experiencethe same accderation
astheframe: a) A freely fallingelevator near theearth’s surface; b) a spacecraft orbiting theearth E.
Theperson, book and the elevator or spaceship 1111 have thesame acceleration towar dsthe earth,

1'You may have seen Squadron Leader Rakesh Sharma floating in the spaceship. In fact, he
could lift hisfellow astronaut on the tip of hisfinger. How could this happen?

Thisis becauseweightlessness occursin any orbiting spaceship (Fig. 10.4b), as it isalways
in a state of freefall. Y ou must remember that weight dependson theframe of reference. The
astronaut i s weightless only in the freely fallingframeof the spaceship. So weightlzssness
does not imply absence of gravitational force.

L et us now consider the samesituation in a frameat rest with respect to the earth, | this
frame the net forceacting on the astronautismg, Therefore, both the spaceship and the




astronaut have weight with respect to this frame. The astronaut can float because heis Motion in Non-Inertial
falling towards the earth at the same rate as that of the spaceship. Frames of Reference

Sofar we have not considered the rotation of frames with respect to oneanother. We know
wnat arotating body has an acceleration. So aframe attached with such abody rotatesand is
non-inertial. Our interest in rotating frames of references arisesmainly because we live on
onesuch frame, the earth. Another example of arotating frameis the one attached to a
merry-go-round. We shall be able to explain severa natural phenomenaby considering
rotating frames. For example, the occurrence of weather disturbances, the variation of g with
|atitude and many other phenomena can be explained if weregard the earth asarotating
frame. So let us now analyse motion from the point of view of arotating frame of reference.

10.3 ROTATING FRAME OF REFERENCE

In Sec. 10.2.2 we have seen how thesecond law of motion transformsfrom an inertial frame
to a translating non-inertial frame. We shall now see how the second law transforms when
one goes from an inertial frame to a rotating frame of reference. Asin the previous case the
transformed version of the second law will contain the inertial force. We shall see that in a
rotating frame more than one inertial force will occur. Our aim will be to determine these
inertial forces.

Let usconsider a particle of massm which isaccelerating at a rate a;,, with respect to an
inertial frame. Then its equation of motion in that frameis

F = ma,,
Again let its acceleration with respect to a rotating frame bea,,,.

Then its equation of motion in that frame would be

Frat = maml N

L et the relative acceleration of the inertia frame with respect to the rotating frame be a.
Then we have

ain = ar()l +a’ QD
~a')=F+F, (10.4)

or Frol =m (aiu

where F’ isthe inertial force given by F’ = -m @. Our task now is to determine & for a - Y
rotating frame. We know that acceleration is the time-derivative of velocity which again is

the time-derivative of displacement. So we shall first relate theinfinitesimal displacements /
of a particle asmeasured from an inertial and arotating frame of reference. We shall take the /
time-derivative of this relation to obtain the relation between the velocities of the particle x x/’ (a)
measured in these frames. Then the time derivative of therelation between the velocities will

give thedesired expression of the accelerations. So effectively, we shall now study, the

relations between the time-derivatives of different kinematica variablesin inertial and

rotating frames of reference. z

10.3.1 Time Derivativesin Inertial and Rotating Frames

L et the motion of a particle of massm be observed by an inertia and arotating observer. Let
theinertial observer O have aCartesian coordinate system ( x, Y, z) asits frame of reference
(Fig. 10.5a). Theframeof reference of another observer 0’, who isrotating, isgiven by
another Cartesian coordinate system (x', ', z*). In practice wewill bedealing with
situations where aframerotates uniformly about an inertia frame. So here we shal assume
that the set of axes( x', y,” z')rotates about ( x, y, z) with a uniform angular velocity. We
areinterested in pure rotation, i.e. O has no translational motion with respect to 0. So we
have taken the origin of the coordinate systems to be coincident. Also let ussuppose that the

Fig, 10.5: (a) The inertial frame
(x,y, 2) and the rotating frame (¥, y',
' . . ) (b) A position vector ¥() in thex:z
(x',Y, z') systemisso rotating that the z and z*-axes always coincide. Thus, the constant (;1((3, LZ-)&ane (

angular velocity @ of the rotating system, liesalong the z-axis. Further, let thex and x'-axes
coincide at an instant of time. 87
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Systems Of Particles Imagine now that the particle has a position vector r ( t) in the xz -plane (and ¢’ =" -plane) at
time ¢ (Fig. 10.5b). At time r + At, the position vector isr (+ + At) and from Fig. 10.6a
the displacement of the particlein the inertial frameis given by

Ar=r(t+A)-r(1). | (10.5a)
Z ) 7’ z’ . W
Ar
rt+ A ,
o I R [0
Y Y20,
X ' @
X (8 x (b) (c)

Fig. 10.6: (a)ThechangeAr in the position vector in theinertia frame; (b) the change Ar' in the position
vector in the rotating frame; (c) illustrating that Ar and Ar' are not the same; (d) diagram for
obtaining the relation between [ ¥'(1) - ¢(¥) ] and @.

The situation isdifferent for the rotating observer. He a so notes the samefinal position

vector r (++ At) but in obtaining the displacement he ensures that the initial position

vector r'(r) in his coordinate system (Fig. 10.6b) was in the x’z"-plane. So he measures the
displacement as

Ar =T (t+ At - 1' (t). (10.3b)
It can be seen from Fig. 10.6¢c that the x” 2’ - planeis now rotated avay from its previous
position. So Ar and Ar' are not the same. From Egs. 10.5a and b we get

Ar=Ar +r (t)-r (). (10.6)
We shall now express{r” (t)—r (+)} intermsdf @ and At. For thislet usrefer to
Fig. 10.6d. It can be seen that

Ir' (®)—r @) I=(rsin®) (o At

=rsin@Ar=lo XrlAt
- where r and x stand for r(t) and r (t), respectively. Againfrom theright hand rulefor

determining the direction of vector product, wesee that (r' (t)—r (t) ) isalong(@ X r).

So the vector quantity ( @ X r ) At represents {r” {¢) - r (t) ) in magnitudeas wdl as

directioh. Thus

rg-rH=(o X r)As
Hence, from Eg. 10.6, we get
Ar _Ar
- + O X -~
At At
Now taking limits on both sides of above as At — 0 we get
dr v +O X
@ = a r
Now c—g—- =v;, = velocity of particlein theinertial frame,
dr’ _ . I o
and & = Vot = velocity of the particlein the rotating frame. Thus
Vin= Ve TO X T. (10.7)
. Y ou must have noted that in the above proof we did not use the specia arrangement of axes
]38 of our choice. So the result given by Eg. 10.7 iSa seneral one




An aternativeway of expressing Eq. 10.7 isasfollows.

(d_rj :(d_rj +(® X r) (10.8)
dt Jin dt jrot

For obtaining Eq. 10.8 we have only used the geometric propertiesof r. So it,can be
generalised for any vector A. Thus we have the general result

% =_d_fA_ +(0 X A) (10.9)
dt Jin dr Jrot

W e shall now use Eq. 10.8 to determined (=a;, - a,,, )-

We know thet a;, = ( d; j » i.e, the time derivative of v;, in theinertia frame.
in

dv
and a,, = (d—”") , 1.e. the time derivative of v,, in the rotating frame.
t Jroi

On applying Eq. 10.9 for A =v;,, we get

dv, dv ,
= “ = - +0 X vy
at i dt jror

On using Eq. 10.7 we get

d
a,-,,=_E Ve @ X I+ ® X Vi +@ X (mx r)
Since @ is constant, we get

dr
a,=a,, TOX [T] +0 X vVu+@ X (® X 1)
dt Jrot

OF ;= +20 X V, +0O X (@ X 1)
d=20 X Vv, T X (0 Xr) (10.10)

Thus theinertia force is given by

F=-ma’'=2ma X V-mo X (® Xr). (10.12)
In Eqg. 10.11 we have written V' in place of v,,, for the sake of convenience.
Hence, from Eq. 10.4 we can write

Fo=F-2m{(®@ XV)-m® X (® X7r). (10.12)

Eqg. 10.12 shows that the dynamics of motionas. observed from auniformly rotating frame
of reference may be analysed in terms of the following three categoriesd forces:

iy F: Thisisthesum o all forces on the particle, arising out of physical interactions or
due to contact. They may be tensions in strings and forces due tofundamental
interactions. Only theseforces are present in'an inertial frame.

i) -2m (o %X V' ): Thisiscaled the Coriolis force. It actsat right angles to the
planecontaining® and V and pointsin the direction of advancementof the screwhead
when the screw isrotated from V' towards e . This force isabsent when the particle has
no velocity with respect to the rotating frame.

iii) —m @ X (@ % r): Thisiscaled the'Centrifugal force. It always acts radially
outward. Thetwo observers in theinertia and rotating frame do agree on the position
vector of aparticleat agiven instant. Hence r may be replaced by ', provided their
origins coincide.

Motion in Non-Inertial
Frames of Reference

Coridlisforceis named after the
French engineer and mathematician
Gustave Gaspard Coriolis(1792-
1843). He was the first man lo
provideadescription of the force. The
term centrifugal comesfrom ‘centre’
and ‘fugal’. The latter means to fly

- off.
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moax(wxr) -~
D

wxT

Fig. 10.7: The centrifugal force.
Mathematically @ x (@ x r) acts at
0. But physicaly~meox(@ x r) isa
forceacting on the body. ThusF
actsat A andisa vector antiparallel
to®X (O XT1)

We shall now study some examplesof these forces. Let us begin with the centrifugal force.

10.3.2 Centrifugal Force

Let usfirst determine the magnitude and direction of the centrifugal force

F., =-m® X{(® x r).SeeFig. 10.7.® x r is perpendicular to the plane of ®

and r. Let the angle between @ and r be . Then the magnitude of @ X risor

sing = ap, where p=rsin ¢ is the perpendicular distance from the axisof rotation to the
head of r.Hencew X (@ X r)isa vector with magnitude w? p, since the angle between
wand® X ris90". From the right-hand rule this vector isdirected radialy inward towards
the axis of rotation. Therefore, -m@ x (@ X r)isavector of magnitude mw?p. It
pointsradially outward from the axis of rotation to the head of r. So we can also write

Foy =—-m® X (0 x 1)=ma2p p =massindp, (10.13a)

where § is the unit vector along the direction from the axis of rotation to the head of r. If the
body's position vector r were measured from the centre of thecircle in which it is rotating,
then ¢ =90°and

F._ =m?rt. (10.13b)

cent

Thecentrifugal force isfamiliar to usin our daily life. If we tie an object to a string and
whirl it around it seems to pull on us. This effect can be explained in termsof the
centrifugal force. Let's see how.

Tcosd

T\

A
mg

Tcos8

4
TsinO
" < ——>
FCent F cent

V
mg mg

Fig. 10.8: In theframeS theforces acting are the tension in the string and the weight of the object. Tcos 8
balances g and Tsin 6 provides the necessary centripetal force. In theframe §' apart from the
tension and weight we have the centrifugal force. These forces are in equilibrium,

Suppose that abal is being whirled around in horizontal circular motion (Fig. 10.8) with
constant angular speed . Let us analyse the motion of the ball from two frames of refe ence.
A dtationary (inertial) frame S, and arotating (non-inertial) frame S that rotates with the




same angular speed'as the ball. So the angular speed of S with respect to § is also @, Look
at theforce diagramsin the S frame and Sframe.

In the Sframe the ball hasa centripetal acceleration (~w?r t). Theforce responsiblefor this
acceleration is provided by the tension in the cord. On resolving theforce T into its
components Re get

Tcos8=mg,
T sin 8 = mw? r

In the S'frame, the ball is at rest. This is because in this frame alongwith T and mg a
centrifugal forceF .  also actson it. Resolution of forces gives

cenlt

T cos @ =mg,

F. =Tsn8=mw?r

cent

W e have taken this example aso to caution you against the misuseof the term centrifuga
force. Sometimes you may come across statements like "The Moon does not fall down as it
moves around the earth because the centrifugal force balances theforceof gravitationand
hence thereis no neb force to make it fall.'

Any such statement goes against Newton's first law. Why? Because if no net force were
acting on a body, it would move in a straight line. Any body moving on acurved path must
have an unbalanced force on it. Now in the inertial frame the moon (or the ball) is seen to
mave in acircular path. Thus, an unbalanced centripeta force given by theforce of
gravitation (or the tension in the string) acts on the moon or the ball.

However, in the rotating frame of reference moving at the same angular speed, these objects
would be seen to beat rest. Only in such frames would the centrifugal force balance the
gravitational force on the moon (or the horizontal component of the tension in the string).
Soremember centrifugal forces arise only in rotating frames of reference. If we analysea
rotating object's motion from a non-rotating frame there is no such thing as centrifugal
force. Of course, either frameis valid for analysing the problems. But never useinertial
forcesininertial frames. They ariseonly in non-inertial frames.

L et us round off this section with an example of centrifugal force.

Example 2: Centrifuge

An interesting application of the centrifugal forceis adevice called a centrifuge. It has uses,
such asfor separating heavy particles suspended in aliquid, for separatingchemicals etc. You
may like to know how it works.

Suppose we have atest tube containing small particles'suspended in aliquid. If the particles
are heavier than theliquid, they will settle to the bottom, but if the particles are extremely
small, this will takealong time. To speed up the process, we attach the test tube to a
centrifuge. It isamechanical device whose operation depends on centrifugal force.

For arigorous analysisof thesituation we need to account for the buoyant forces on the
suspended particles and the viscousforce acting on the mobile particles. Since theseforces
are small compared to the force of gravity and the centrifugal force, weshall ignore them.

Initially the tube hangs vertically, asin Fig. 10.9a. The centrifugeis carefully balanced with
other tubes (not shown in thefigure). When the centrifuge is spun about its central vertical
axis, the tubesfeel acentrifugal force (in the frame rotating with the centrifuge) pointing in
the horizontal direction. Theresultant of the force of gravity and centrifugal force acts likean
effective force d gravity. At high values of angular speed F,,,, is much greater than mg. So
this effectiveforce is much stronger and points almost horizontaly (Fig. 10.95). The Lube
rises until it is oriented along the direction of the netforce F,,, on it. The surface of the
Iiquid orients itself normal to the net forceit feels. A particle suspended in the liquid moves
in the direction of the netforceit feels. Thisisessentially towards the bottom of the fube.
SinceF,,, is much greater than mg for high values of ®, the suspended particles settle to the
bottom of the tube much more rapidly than they would otherwise.

Y ou may now liketo work out an SAQ to consolidate your understanding of centrifugal
forces. !

Motion in Non-Inertial
Frames of Reference

———— e ————— — —

(b)

Fig. 10.9: () A test-lube in a
centrifuge. Thedotted lineis the axis
of the centrifuge: (b) when the
centrifuge rotates, the centrifugal
forcemakesthe freeend of the test
tube swing out.
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(@)

(b)

Pig. 10.10: Metion of a
frictionlessball passingover the
rolation aXiSat C, assecn from
above in  (a) an inertial frame
(solid line) and (b) the rotaling
frame (dashed ling).

SAQ 4

(8 When wedrive acar too fast around a curve, it skids outward. To usit seems asif it is
pushed by acentrifugal force. If you were standing by tlie roadside watching this happen,
how would you explain the car's motion?

(b) A tiny virus particle of mass6 x 10-'? kg isin a water suspension in an ultracentrifuge
which is essentially a centrifuge where extremely high angular speed can be generated. It
is4 cm from the vertical axis of rotation. The angular speed of rotation is
2n X 103 rads-l.

(i) What is theeffective value of ‘g’ relative to the frame rotating with the
ultracentrifuge?

(if) What is the net centrifugal force acting on the particle'?

10,3.3 Coriolis Force

Let usconsider a particle which moves with a velocity v, with respect to a rotating frame.
The effect of Coriolisforce isrelatively easy to visualize at the axis of rotation, where tlie
centrifugal forceis negligible. So let us begin with that case.

A rotating horizontal disc is shown in Fig. 10.10a. The axis of rotation is perpendicular to
the plane of this paper at point C which isthe centre of thedisc. Let us now consider a ball
passing through C. If friction can be ignored, tlie ball isfree of horizontal forces. Therefore,
it movesin astraight line (the solid line of Fig. 10.10a) with constant velocity v relative to
theinertial frame. Asseen from thisframe, the rotating disc turns, say, counterclockwise
with angular speed w. But as seen from aframefixed in the disc, it is the inertial frame that
rotates, with the same angular speed in the opposite sense, clockwise. So in the rotating
frame the ball's tragjectory also turns clockwise, following the curved path indicated by the
dashed line in Fig. 10.10b. Thus, there must be an inertial force in the rotating frame to
provide the curvature that was not present in the inertial frame. It isindeed the Coriolis
force.

The magnitude of the Coriolis force can be appreciableon a turntable or merry-go-round. For
example, if wis| rads™' and v, is5ms-' the Coriolis acceleration 2 0 v, is 10 ms=,
equal to the acceleration due to gravity.

rot

The Coriolis force associated with the earth's rotation ismuch weaker than the effect
considered above because theearth rotates only once per day, corresponding to an angular
speed @ =2n X 10 rad s~'. Even at projectile velocities of 10° ms~!, the Coriolis
acceleration 2w v, isonly of the order of 10~ ms-2 which isfar less than g. That is why
the Coriolis force is not intuitively familiar. However, when the Coriolis force associated
with theearth's rotation acts over asufficient period of time. say for several days, it can have
striking effects. The centrifugal and Corioliis.forces associated with the earth's rotation are
responsible for many a natural phenomena. For example, the variation in ¢ with latitude. the
deflection of a moving body, wind patterns in the two hemispherescan be explained using
the concepts of centrifugal or Coriolis force arising on a rotating earth. So let us now study
the earth as a rotating frame.

104 THE EARTH AS A ROTATING FRAME OF
REFERENCE

A number of important phenomena are driven by the inertial forcesacting in a rotating frame
of reference attached to the earth's surface. Let us study some of these phenomena.

10.4.1 The Variation of g with Latitude

You may know that a person weighs more at the poles than at the equator. Thiseffect arises
clue to the rotation of the earth, In fact we have already stated this result giving the variation
of ¢ with latitude (recall Eq. 5.44 of Unit 5. Block |). Let us now prove the resull.

Let a purticle 7 he at rest with respect to tliecarth al latitude A near the carth's surface. Then
in the carth™s frame it is subjected to the force of gravity F, (= mg) and the centrifugal force




shown in Fig. 101 la. The Coriolis force s zero for this particle, sinceit iSat rest in Motion in Non-Inertial
Frames of Reference

F
eent
the rotatingframe. The magnitude of F,,,, is given from Eq. 10.13a as

Feene = MO?RSIN ¢ = M?R cOSA. [+ A= g—¢]

cent
whereR is theearth'sradius. Let the resultant of F, and F,,,, be F; . Let us resolve these

threeforcesdong theradia and transversedirections. Note that an the earth, the radia
direction corresponds to the vertical (oppositeto F,) and the transverseto the horizontal. Let

g and g, represent the vertical and horizontal componentsd g', respectively (Fig. 101 1b).

So we have -
mg,=F,~F,, COS A =mg - m &R cos® A
or g =g—@Rcos’ LA (10. 14a)
ad mg, =F,, SnA=me’RcosA sni

or gy =wRcosAsnA (10.14b)

Now, the maximum magnitude o the centrifugal acceleration, (F,,,,/m), is w*R. Let us
calculate itsvalue.

2
oR= Erad Yo (637 % 105m) =34 x 102 ms2
24 x 60 x 60s

Thusa?R « gand g = g, i.e. theangle between g, (theapparent vertical) and g (the real
vertical) is very small. Let us computeits vaue. From Fig. 10.11b

8 _ ©Rcosl.sin A w?Rsin2A
£, R 2%

tana=Q =

Fig. 10.11 Variation of g with A.
(a) Resultantof F, and Fien- The
dotted line E represents the €équator.
PV is the vertical direction at

P (b) g* g, and g}

It hasamaximumvalueat A = 45° which:is

(3.4 x 102 ms2)

o =0.0017 rad=0"6'.

mﬂ,\'= 2 X'9,8 ms-?.
Soeffectively gj=0and g% =g". '
Fr omEq. 10.14a, we get

8" =g - @R cos?), (10.15)
Atthepolesh=90"and g} =g, i.€. & =8
At theequator A =0, so that
g,=0, gr=g—- @R,
- 8. =& - R, whereg, isthevaued g a equator.
Now using Eqg. 10.15, we may write,
g =g-0R (1 -sinfA)=(g-wR)+@Rsin’}A
o g* =g, TR sin?}3,
which issameas Eq. 544 of Block 1.

So thevalued acceleration due to gravity at the poleswill begreater by 34 x 10-2ms-2
than its valueat theequator if we take earth’s rotation into account. However the measured
difference is52x102 ms2. TS discrepancy arises becausetheearthis not a perfect
sphere. It isflattened at the poles and bulging at the equator. Dueto the centrifugal force
arising framearth’s rotation a plumb line does not point exactly towardsthe centre of the
earth. Instead itSw ngs through asmall angle. You nay now liketo work out an SAQon ,
the=above concept. o 93 -
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SAQ 5
a) What must be the angular speed of the earth so that the centrifugal force makesobjects
fly off itssurface? (Takeg= 10 ms=2).

b) If the angular Speed is just enough to make this happen, from which part of the earth |
would the objects fly off?

In the above discussion we have considered the body to be at rest with respect tb the earth.
What can you say about a body moving with respect to the earth's surface? We will now'
have to'take into account the Coriolisforce also. Let us analyse this motion.

10.4.2 Motion on the Rotating Earth

Let usconsider a particle of mass» moving with velocity v at latitude A on the surface of

the spherical earth. So v is tangential to the sphere. Let the earth's angular velocity be w.
Then in the earth's frame of reference, the force on » is given from Eg. 10.12 as

F=mg-2m@®@ X v-m@® X (®@ X r).

Let us analyse the additional term due to Coriolisforce. Refer to Fig. 10.12a. Let us
decompose @ into avertical part @, and horizontal part ®,. Then the Coriolisforce isgiven

by

F_=2m(® x v)

car

=-2m (@, X v)=-2m(®, X v).

‘ !> Ay
wH /T\\ Y - */.. -~
AN - e
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P >
) Av FH
(a) ‘ (b) ©

Fig.10.12:  Deflection of amoving particledue lo Coriolisforce. () Breakingw into components @, and
w,: (b) directionsdf F,, in Nand S-hemisphere; (¢) clockwise turningof v in N-hemisphere.

Now @, and v are horizontal, so @, X v isvertica. Andw, x v alonegivesriseto the
horizontal component ¥, of the Coriolis force. ®,, isperpendicular to v.So @, x Vv has

magnitude ®;, v. Now let  be a vector perpendicular to the surface at latitude 2, i.e. Tis
along @,. Then we have that

T ,
mV:m‘,?:mcos(-z—— l)'x‘- =osinA%

and Fy, =-2m(®, X V)=2mosnk(fxV)

The magnitude of F, is 2mvey sinA. F,, isaforce perpendicular to v (Fig. 10.12b). So its
effect isto producecircular motion. Let us see how.

The effect of F,, will be to produce a deflection towards the right in the northern hemisphere.
F,, produces a changein thedirection of v. Let the change in v be Av in an infinitesimal
interval of time Ar. From Fig. 10.12¢ you can see that the resultant velocity vector moves
towards the right. F, is now perpendicular to v + Av. So in the next such time interval At.
the velocity vector will further turn towards right. So the effect of F, in the northern ~
hemisphere is to produce a clockwise rotation of the velocity vector. In the southern
hemisphere this will be anticlockwise.




So you can seethat thiseffect of Coriolis force is that it turns straight line motion into
circular motion. Ttiisresult has anumber of interesting consequences. For example, rivers
flowing in the northern hemisphere wash out their right banks, and thosein the southern
hemisphere their left banks. Again in the northern hemisphere the right hand rails of the rail
tracksare worn out faster if it isadouble-track railway. Thisis becauseon each track the
train always goes in one direction. Due to F,, its motion has a component to the right from
the direction of motion. Similarly, the left hand rail isworn out faster in the southern
hemisphere.

Air flow patterns in the atmosphere can also be explained by this result. Imagine that
temperature difference in the various layers of air has given rise to a low pressure regionin
the atmosphere (Fig. 10.13a). The closed curves in the figure represent lines d constant
pressure, called isobars. The pressure gradient gives rise to aforce on each element of air. In
the absence of other forces winds would blow inward and the pressurein the region would
become uniform.

=== 3 H = ~ \
1 N s I N TN NS Vi
.« 0 - - // ‘\ 'I \ ‘IOW A \\\
\\,____ . - /\‘(tl»_-§:~" // //
' \*‘“N\/é//
Feor
(a) (b)

Fig. 10.13: Air-tlow patterns (a) Dotted lines represent. theisobars: (b) right deflection of the air particles.

However, the pressure of*€oriolis force considerably changes the air flow pattern. Let us
consider thisevent in the northern hemisphere. As theair flows inward towardsthe low
pressure region it is deflected toward the right as shown in Fig. 10,13b. The result is that
wind rotates anticlockwise about the regions of low pressure. This effect causes most
cyclones to beanticlockwisein the northern hemisphere and clockwise in the southern
hemisphere. This effect can be seenquite clearly in the INSAT picturesd clouds taken
during acyclonic storm.

So far we havediscussed some natural phenomenawhich arise due to rotation o the earth.
We can also demonstrate rotation of the earth in alaboratory using the Foucault's pendulum.

10.4.3 Foucault's Pendulum

[n 1851, J.B.L. Foucault for the first time demonstrated the rotation of the earth. He
suspended a heavy metal sphere of 28k g on awire aimost 70m long, The suspension point
d the pendulum wasfree to rotate in any direction. The motion of the pendulum was
observed from a point above. With successive swings of the pendulum it seemed that the

plane of its motion rotated. In |h the plane of the swing changed by 11°. A full circuit was
completed in about 32h.

Why does the plane of motion of the pendulum rotate?

To understand this, we shall visualise this experiment at the North Pole (Fig. 10.14a). In an
inertial frame the only forces acting on the pendulum are theforce of gravity and the tension
d the wire. Both theseforces act in the plane o oscillation. So they cannot rotate it.
Therefore, with respect to an inertial frame the plane of the oscillation of the pendulum
would remain fixed. The earth would, of course, rotatefrom west to east under the pendulum
once in every 24h. Therotation of the earth is anticlockwise as seen from the North Pole.
D to an observer standing at the North Pole, the plane of the oscillation would seem to
rotate clockwise (east to west} (Fig. 10.14b). It can aso be explained for other latitudes but

Ve ar e not going into those details here.

Lea us now summarise what we have studied in this unit.

Motion in Nun-Inertial
Frames of Reference

(a)

(®)

Fig. 10.14: Foucault's pendulum.
(a) The pendulum on theN-Pole. The

arrow indicatesthe direction of
rotation of the earth; (b) rotation of
the plane of oscillation.
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Fig. 10.15: Diagram-for TQ 1

Fig. 10.16: Diagram for
TQ2.
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10.5 SUMMARY'

e Theframesof reference accelerating with respect to each other are called non-inertial

frames.

The net fprce acting on any object in the non-inertial frame S' having an acceleration a
with respect to an inertial framesS is made up of two parts: theforce F,acting on the
objectin the S frame and an inertia forceequal to ~» a. Inertial forces ariseonly in
non-inertial frames.

The equation of motion of an object in a rotating frame of reference isgiven as
F,=F-2m(@ Xv)-mo'X (® Xr)

where F is the sum of al forces acting on the object as seen from the inertia frame.
The second and the third terms are the Coriolis and the centrifugal forces, respectively. .

Any frame of reference attached to the earth is anon-inertial frame of reference. Rotation
d theearth is responsiblefor many a natural phenomena, such as variation o g with
latitude, deflection of moving bodies, etc. Theearth's rotation can be demonstrated with
the help of Foucault's pendulum.

10.6 TERMINAL QUESTIONS

1.

An inclined plane (Fig. 10.15) isaccelerated horizontally to the left. The magnitude of
the acceleration isgradually increased until ablock of mass #:, originally at rest with

respect to the plane, just starts to slip up the plane. The coefficient of static friction
between the plane and the block is0.8. (It is given that Sin 37° = 3/5, ¢ = 10ms~2).

a Draw diagrams showing theforcesacting on the block, just before it slips (i) in an
inertial framefixed to thefloor and (ii) in the non-inertial frame moving along with
the block.

b) Find theacceleration at which the block beginsto slip using both theforce
diagrams (i) and (ii) of part ().

a A space dtation of radius 10m Spinsso that a person insideit (Fig. 10.16) hasa
sensation of ‘artificial gravity' when afloat in space. Therate of spinischosen to
attain g = 10 ms™2. Find thelength of the'day’ as seen in the spacecraft through a
window W,

b) A 4.0x 103 kg train runs south at aspeed of 30 ms~" at a latitude of 60° N.
What is the horizontal forceon the tracks? What is thedirection of thisforce?

Y our weight is measured to be equa to W when you are at rest with respect to theearth.
Will your weight be different from W when you are in motion with respect to the
earth ?

10.7 ANSWERS

SAQs

i) Since thecar ismoving along a curved path its velocity vector is continually
changing its direction. So it has anon-zero acceleration with respect to the man

standing on the road. So theframe attached to itis non-inertial with respect to-the-
man.

i) Since theraindrop has attained aterminal velocity it isfalling with aconstant
velocity with respect to the ground. So the frame attached to it is inertial with
respect to the ground.

iif) Anelectron moving in a uniform magnetic field experiences aforce. So it will be
accelerating with respect to a pole piece. Hence, the frame attached to the electronis
non-inertial with respect to the pole piece.




2.

Differentiating Eq. 10.1 twice with respect to time, we get Motion in Non-Inertial

or

or

a)

b)

Frames of Reference

rq‘;rp-—R
aq =ap'—a

Fq=maq =ma, —ma

Fq = Fp - . R w
In order to Start, the train has to accelerate. Let thisacceleration.be a, and —mal
directed along thex-axis. Now, following Egs. 10.2a and 10.2b, we can write the |
tota force acting on the water in theframeof referenced the train as (seeFig. / ‘v_mgﬁ
10.17) Fo

FQ= mg + ( —m:a ), Fig. 10.17

. where mis the total mass of the water and the glass.

g=—gﬁ and a=afl .

The surface of water  takes up a position normal to theforce F, asshownin Fig.

10.17. f
Let thelift beacceleratingin the z-direction (Fig. 10.18). The inertial force acting T
. on theman isgiven by
F =-mf, z
where mis the mass o the man. So the total force on the man isgiven by ]
F=ng +F= mg —mf.
But g= —gﬁ,f =fﬁ. —mfk
Hence, F=-m(g*f) k. —mgk
So the magnitude of the force on the man is greater than mg. Hence, hefeels Fig. 10.18

a)

heavier than usual.

The observer on the roadsidewill analyse the situation asfollows: A centripetal
force (= mv2/r) where mis the massof the car, v its speed and r the radius of
curvature of the bend, isrequired by thecar to move aong the curve.“You may
recall from Sec. 4.3.1 of Block 1 that thisis normally provided by way of the
banking on theroad an4 thefriction between the tyres and the road, Let the
contribution due to banking and friction be 7, , F,, respectively. Then the equation
of motion of the car will be

Fi+Fy _v?
Fy+F,=m?r or 12 =%
m r

Now, theleft hand side is afixed quantity dependingon m Soif vis large, » should
be large in order to make the above equation hold. In other words, the car has to
move more outward to have alarge r, when it is moving very fast.

i) For this problem
02r=(2nx103s1)2x (0.04m ) =1.6 x 106 ms=2

Since thisismuch larger than the usual value of ‘g’ the effectivevalue of ‘g’
can be consideredto beequal t0 1.6 X 106 ms=2,

ii) Thenet centrifugal force= m? r, wherem = 6 X 10~ kg. Soits valueis
(6X 101 kg) X (1.6X 108 ms-2)=96 X 10-13 N.

The required angular speed will correspond to g* = 0. Weknow from Eq. 10.15 that
g" = g —w?R cos?A. So therequired conditionis

PPN
R cos? A

S thg minimum value of ® corresponds to the maximum value d cos? h, i.e. 1 for
A =0 . Thishappensat theequator. And the required angular speed of earth isgiven
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O)min = V R ’

whereR is the equatorial radius of theearth =6.37 X 105 m.

O = A L) 35103 rads,
6.37 x 105m

b) Atequator asexplained in the answer to part (a).

Terminal Questions
1. 8@ RefertoFigs. LQ!9 (aand b)for parts(i) and (ii), respectively.

mg g E;asine
s

acosd
{a) (b)

Fig. 10.19: F isthe force of friction, N isthe normal reaction and mg is the weight of the block,a) The
resultant of three forces F,, N and mg isequal toma. Componentsd aalong fand fhave aso
been shown; (b) In additionto F_, N and mg. we have I, theinertial force (=-ma).The
farcesF , N, mg and F* are in equilibrium.

b) Using theforce diagram for part (i), i.e. Fig. 10.19a, we have the equation of
motion

mg +NtF,=ma. (10.16)
Now, let the unit vectors along F, and N be f and 6,\‘respecﬁv'ely. So we have
mg cos (—6 )+ mg sin 6 (ll\) +N (6) +F, ('II\) = ma cosd (f) + ma sind (6).
Thus,

(F, + mg sin® —macos 8) ?+(N—mgcos6—ma sinG)]’J\=0.

& F, Yt mg sine-macosezo}' 10.17)

and N -mg cos8-masn8=20

Now if abe the magnitude of acceleration a which the block just beginsto slip up
we have F) = uN wherep =0.8.

So from Egs. 10.17 we get ~
MWN =m(acos ©~g sin 8)
or pm(gcosB+a sin®)=m(a cosB-gsinO)

.'.g(pcos9+sin_6)$a(cos 6-p siné)

ora= o[ HEOS 8 t+sin8g
-f cos 6 - usin 0

Since, sin 8 = 0.6,cos 8 =0.8

soa=( IOmS‘z)

[0.8 x 0.8 +0.6
R '

= 39 ms
0.8—0.8x0.6) s




Using theforce diagram for part (ii), i.e. Fig. 10.19b, we have, Motion in Non-Inertial
Frames of Reference

mg+N+F +F =0.
Since F' =- ma, we get

mg+ N +F =ma,
Thisis same as Eq. 10.16. So the succeeding andysiswill follow asin the
previouscase and we shall get a= 39 ms~2. You must have noted that we come

acrossan eguation of motionin theinertial frame, but acondition d equilibrium’in
thenon-inertia frame.

a Lettherequired rateof spin bew, Then the corresponding length of day isgiven by

Tr=—1.
o

Since the person inside has asensation of artificia gravity, we have

w'r =g, wherer = 10m.

42
“p =8

or T =2n\/5
- g
/ 10m
=27 10 ms=2 =6.3s.

b) Referto Fig. 10.20. NPM and QPR are, respectively, the longitudeand | atitude
through P, the position of thetrain. AB is the equator. The horizontal force is due

to the Coriolis force given by

F,, =-2m(® X V).

[o

w
Since theangle between @ and v is (180" - k) (seefigure caption), the magnitude A
of the horizontal force is 2 nvw sink, <1
N w,¢
2
wherem=4.0 x 105kg,v =30ms-!, 0= ——————rad s and A =60". @ X
24 x 60 X 60.

So the magnitudeof the horizontal force on thetracksis

2
2x(4x105kg)x(30m5‘1)><( i

—— —— 1}x §in60° = 1.5 x 102 N.
24 x 60 x 60

A
Thedirection isoppositeto (® X v). Now, (@ X V) pointstangentialy to the
latitude QPR in thesense Q to P. SoF . will be tangential to QPRin thesense P Fig 10.20: Diagram for terminal

to Q, i.e. towards west. question 2b. You must note that
, ZNOP = 90° — A liisequal tothe

. . corresponding angle (L WPV). And
The weight of your body isgiven by JVPC = 90°. S0 ZWPC = 90° —
A +90° = 180° = A

F=mg '-_Fcenf_ Fcor’

where mis your mass. If you are &t rest with respect to theearth F,,,. = 0. But if you are
moving F,,. # 0. So your weight will bedifferent froth W when you arein motion with

respect to the.earth. 99
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APPENDIX A
CONIC SECTIONS

The curvesobtained by dlicing a cone with aplane not passing through its vertex are called
conic sections or simply conics. If the cutting planeis parallel to the side of the cone, asin
Fig. A.1a, theconic is aparabola. Otherwise the intersection iscalled-an ellipse or a
hyperbola, according as the plane cuts just one or both nappes (portion of the cone) as
shownin Figs. A.lband A.lc. Circleis the special case of ellipse when the intersecting

planeis parallel tothe base of the cone (Fig. A.1d).

(b) (© @)

Fig.A.l: Conic sections: P - Parabola, E - Ellipse, H - Hyperbola, C - Circle | A

L }

We shall now present a unified treatment for all conics. For thiswe shall defineaterm called M

‘eccentricity’. 1 E ' I Q
A.1 Eccentricity and Polar Equation of a Conic ’ ! I
Refer to Fig. A.2. A conic section may bedefined as a curve traced out by a point moving in F D I

a plane such that theratio of itsdistance from afixed point F (afocus) and afixed line AB (a —

directrix) is constant. Thisconstant ratio iscalled the eccentricity. It isdenoted by e [
-~ |

If D<e<1, theconicisanelipse. If e=1itisaparabola and if e > 1, it isahyperbola

In the Fig. A.2, letP beany point on the conic. PQ is perpendicular on AB from P. Then ~ Fig- A2 Polar equation of a conic

according to the definition,

EE;
e_PQ . (A.D
Using Eg. A.1 weshall obtain the polar equation of a conic, when the pole (i.e. the origin of
the plane polar coordinates) isinside the curve. Let the pole be at F. The polar axisFx isso
chosen that it is perpendicular to the directrix. L is a point on the conic such that FL is
perpendicular to Fx. FL iscalled the semi-latus rectum of theconic. Let FL =p. LM is

again the perpendicular from L on AB. Let LM =D.

Now, we have
FP=r and QP=D--rcos®,

So from Eq. A.l, we get
F=e(D-rcos0)

or r=
1 + e cosB

But from the definition of e, wefind that
L%{—=e, i,e.% =¢ .or p=eD.
S0, we getfrom Egq A.2 that
P
[ = . A3
1+ ecosd 43
Eqg. A.3isthepolar equation d aconic withpole inside.

T he three types of conics have been shown in Fig. A.3.Because cos (-8) = cos0, all the 101




