
Systems of ParticJes The change in T in one year (Z 365 days) is 10 x 10d  s ,  i.e. 10-' s. 

10-5s :. The chqngE in a day is dT = - = 2.7 x 1 p 8 s .  
365 

Hence, the change in rotational RE. will be 

= -1.6 x 1017kg m2s-2 

S o  the rotatiolial energy decreases by 1.6 x lOI7 J per day. 
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10.1 INTRODUCTION 

In the previous unit you have read about rigid body dynamics. The present unit will be the 
final one of our Elementary Mechanics course. We had introduced the concept of frame of 
reference in the very first unit of Block I .  In Unit 2 of Block 1 we introduced the idea of 
inertial and non-inertial observers. So far we have explained motion from the point of view 
of inertial observers. But as a matter of fact we live on n frame of reference (the earth) which 
is non-inertial. Moreover, we shall see that certain problems can be answered quite elegantly 
if we take the point of view of a non-inertial observer. So in this unit we shall study the 
description of motion relative to a non-inertial frame of reference. First we shall study what 
is meant by a non-inertial frame of reference. 

You must have had the following experiences while travelling,in a bus. You fall backward 
when the bus suddenly accelerates and forward when it decelerates. When the bus takes a turn 
you have sensation of an outward force. We shall explain these features by introducing the 
concept of inertial forces. Thereby we shall see how Newton's second law of mo'tion gets 
'modified in a non-inertial frame. This will be used to develop the concept of weightlessness. 

Frames attached with rotating bodies like a merry-go-round, the earth and so on form the 
most interesting examples of non-inertial frames of reference. We shall derive the equation of 
motion of a body in such a frame of reference. Thereby we shall come across two inertial 
forces, namely, the centrifugal force and the Coriolis force. The former can be used to 
explain the action of a centrifuge. We will study a variety of applications of these forces in 
connecfion with the earth as a non-inertial frame of reference. Centrifugal force finds . 
application in studying the variation of g with the latitude 4f a place. 

Several natural phenomena like erosion of the banks of rivers, cyclones etc. can be explained 
using the concept of Coriolis force. Finally we shall study about Foucault's Pendulum 
experiment wilh a view to estabkishing the fact that the earth rotates about an'axis passing 
through the poles. 



Sys!ems of Particles Objectives 

After studying this unit you should be able to 

0 distinguish between an inertial and a non-inertial frame of reference 

e write down the equation of motion of a body in a non-inertial frame of reference 

identify the inertial forces appearing in any non-inertial frame of reference 

solve problems on motion from the point of view of a non-inertial frame of reference. 

10.2 NON-INERTIAL FRAME OF REFERENCE 

In ~ e c .  2.2.1 of Block 1 we have discussed about inertial and non-inertial observers. You 
may recall that a car moving with a constant velocity and a man standing on the road are 
inertial with respect to each other. Let us now specify inertial and non-inertialfiames of 
reference. Refer to Fig. 10.1. 

Pig. 10.1: S and Sk are inertial with respect to each other. Sand Se are non-inertial with respect to each other. 

M is a person standing on the road. We take some point on the person of M as origin and 
define a three-dimensional Cartesian coordinate system S. Let Car A-move with a uniform 

I 

velocity and Car B accelerate with respect to S. Let us now choose a point on each of Car A 
and B as;origin and define the coordinate systems SA and SB.  

The person will locate any object with reference to the coordinate system S. The drivers in 
the cars will locate objects with respect to S, and SE. They may choose a common zero on 
the time scale. Then you may recall from Sec. 1.2 of Block 1 that S, S, and SB are frames 
of reference. S and SA are two inertial frames of reference with respect to each other. And S 
and SB are two non-inertial frames of reference with respect to each other. In other words, the 
frames of reference moving with rrnfir~n velocity with respect to each other are inertial and 
those accelerating wirh respect to each other are called non-inertial. For the sake of 
convenience, from now onward we shall mostly use the word 'frame' in place of the phrase 
"frame of reference". Let us now discuss some examples of inertial and non-inertial frames of 
reference. 

Consider a child sitting on a revolving merry-go-round in a park. A frame attached to'a fixed 
structure S in the park and the child are non-inertial with respect to each other because the 
merry-go-round has an acceleration due to rotation. Likewise the frame attached to a ball 
thrown up in the air by a child and S are non-inertial with respect to each other as the ball 
has an acceleration equal to g. The frame attached to some bench in the park and S are 
inertial with respect to each other as the bench is at rest with respect to the fixed structure. 
Similarly, the frame attached with a child walking leisurely (i.e. with a low uniform speed) 
and S are inertial with respect to each other. 

You may now like to work out a simple SAQ to determine the nature of a frame, i.e. 
whether a frame is inertial or non-inertial with respect to any given frame. 



4 SAQ 1 
State giving reasons the nature of the frame attached 

i) to a car moving along a curved path with a uniform speed with respect to a frame 
attached tb a man standing on the road, 

ii) to a falling rain.drop during a drizzle (when it has attained a-terminal velocity) with 
respect to a frame attached to the ground, 

iii) to an electron moving in a uniform magnetic field produced by an electromagnet, with 
respect to a frame attached with a pole piece of the magnet. 

So you have learnt how to identify inertial and non-inertial frames. Recall from what you 
have studied in Sec. 2.2.1 of Block 1 that for many purposes a frame fixed on the surface of 
earth can be considered as inertial. In all our previous units we had been analysing motion 
from the point of view of an inertial frame. 

We shall see that certain problems of rotational dynamics become simpler when analysed 
fiom the point of view of a non-inertial frame. You may recall from Sec. 2.2.1 that 
Newton's first law of motion holds only in an inertial frame: You also know that the first 
law can be obtained from the second law. So we can say that the second law also holds only 
in an inertial frame. Let us now see how the second law will be modified for a non-inertial 
observer. 

10.2.1 ' Motion Observed from a Nan-Inertial Frame 

Let us take a simple example. Suppose you are standing on a road and observe a car about to 
start. We know that in order to start, a car has to accelerate. You would see that a person 
sitting inside the car gets presscd back against the seat by the acceleration. How would you 
explain this? Since you are an inertial observer with respect to another inertial observer, you 
will explain this as follows: This happens due to inertia of rest. The hips and the waist form 
part of the body of the man that is in direct contact with the seat of the car. The head and the 
torso are not in direct contact. This portion has a tendency to remain at rest. So as long as 
the car accelerates, the torso and the head tend to remain behind the waist and the hips. Thus, 
the person in the car gets pressed back against the seat. 

Now, let us try to visualise the situation in a frame St attached to the car. Due to the 
acceleration of the car, Sf is non-inertial with respect to the person at rest. With respect to Sf 
the portion of the person's body that is in direct contact with the seat of the car is at rest. 
T h e  other portion falls back. How can this behaviour be explained from S? We can say that 
in Sf some force acts on the person in a direction opposite to the acceleration of the car. This 
force neutralises the accelerating force omthe waist and hips and causes the other part to fall 
back. 

But  where does this force arise from? We have seen in Sec. 5.5 of Block 1 that forces occur 
either by way of contact (e.g. push, pull, friction) or due to some action at a distance (e.g. 
gravitational or electromagnetic field). But the force here does not have either of these as its 
origin. Moreover, such a force does not exist from the point of view of an inertial observer. 
However, this force is very much real from the point of view of Sf. This is calledthe 
inertia1 force. From the example we have just now considered you can understand that the 
magnitude of this force is equal to the accelerating force and it is directed opposite to it. 
However, we shall quantify this force very soon in this section. 

Continuing with the example, we find that in S' the man is held at rest by a forceexerted on 
him by the back 04 the seat. If you were to remain at rest or in uniform motion with respect 
to an inertial frame of reference, no force would be needed. But in order to be at rest in anon- 
inertial frame of reference like that of the accelerating car, some force is required. This 
implies that the second law of motion will take a different form in a non-inertial frame. We 
shall now study that. In the process, we shall be able to quantify 'inertial force', 

Motion in  on-~nertial 
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Systems oi  Particles 10.2.2 Newton's Second Law and Inertial Forces 

Suppose that two scientists P and Q decide to observe a series of events such as the position 
of a body of mass m as a function of time. Each has his own set of measuring deyices and 
each works,in his own laboratory. Let us suppose that P has confirmed by perfohing some 
experiments in his laboratory that the second law of motion halds there precisely. His frame 
of reference is, therefore, inertial. How can P find out whether Q's frame is inertial or not? 

As per convention let the franies be defined by two Cartesian coordinate systems (Fig. 10.2) 
with identical scale units. In general, the coordinate systems do not coincide. We shall 
assume that none of the frames is executing a rotation and that they are executing relative 
motion with their corresponding axes always parallel to each other. Let the position vectors 

Fig. 10.2: The frames of reference of m be rp and r, with respect to P and Q, respectively. If the origins of the two frames are 
of P and Q displaced by a vector R, then we have from Fig. 10.2 

I 

The process of obtaining 
accelerations h m  the position If P sees m accelerating at a rate a, = fp he concludes from the second law tbat there is a force 
vectors involves differentiation with 
respect to time, Incidentally. the time On given by 
interva~b are, strictly speaking, not 
the same in the two frames of P and 5 = map. 
Q. However the mathematical 
treatment comsponding to unequal 
time intervals will be very Q observes m to be accelerating at a rate a, = Q, as if it were expecencing a force 

. . 
cornplicaled. This issue will be 
resolved for two inenial and non. Fq = maq 
inenial frames by studying, 
respectively, the special arid general 
theories of relativity. Fqr the sake of 

Let us now find out how Fq is related to the force Fp. We know from Sec. 1.5 of Block 1 

simplicity here we shall assume the that if be moving with a uniform velocity relative to P, i.e. if Q is also inertial, then 
time intervals to be equal. aq=%and 

F~ = maq = map = F ~ '  

So we find that the force is same in both the frames. In other words, the equations of motion 
have the same form in both the frames:So all inertial frames are equivalent. There is no 
dynamical experiment that leads us to prefer one inertialframefrom another. 

Let us now see what happens if Q were accelerating with respect to P. How about working 
out the relation between Fp and F, in this case? 

SAQ 2 
Find the relation between Fp and Pq when the acceleration of Q with respect to P is a? 

Now that you have solved SAQ 2, we can express the relation between Fq and Fp as 

Fq= Fp+Ft=maq (10.2a) 

where F' = -ma. (10.2b) 

So we are able to preserve the relationship between the net force on the object and its, 
acceleration. But the net force in the Q-frame is now made up of two parts: a force Fp and 
another foqce F equal to -ma. The latter originates from the fact that the frame Q has an 
accelerati n a with respect to P. This force F' is called the inertial force. Its expression is 
given by d q. 10.2b. Its magnitude is equal to the product of the mass of the body and the 
acceleration of the non-inertial frame. It is directed opposite to the acceleration of the frames. 
An important special case of Eq. 10.2a is that in which the force Fp is zero. In such a case 
the body as observed in Q, moves under the action of the inertial force alone. The situation 
of the torso and the head of the man in the car is very much like that. Let us now work out 

84 
an example to understand the meaning of inertial force better. 



Example 1 
A small ball of mass m hangs from a string in a car (Fig. 10.3a) which accelerates at a rate 
a. What angle does the string make with the vertical and what is the value of tension in it? 

Fig. 10.3: (a)  A car accelerating at the rate a; (b) force diagram with respect to an inertial frame; (c),force 
diagram with respect to a frame accelerating with tk Car. 

We shall analyse the problem both wiLh respect to an inertial frame and in a frame 
accelerating with the car. Let the tension in the string be T and let it make an angle 0 with 
the vertical. 

Motion in inertial frame 
Refer to Fig. 10.3b. With respect to an inertial frame the mass moves in the direction of 

4 motion of the car with an acceleration a (a-I ). This is caused by the tension T and the 
A 

weight mg (g  = -g j ). There is no motion in the y-direction. 

Equation of motion in the x-direction is given by 

From Eqs. 10.3a and b, we get 

a 
tan 0 = - or 0 = tan-' 

&' 

and T = I ~ ( T  c 0 s 8 ) ~  + (T 

Motion in ihe frame accelerating with the car 
Refer to Fig 10.3~.  In this frame apart from the forces T and mg there is an inertial force F' 
arising out of the acceleration of the frame. With respect to this frame the mass is at rest, 
i.e. i t  is in equilibrium under the influence of T, mg and F': 

:. T cos 0 - mg = 0, i.e. T cos 0 = mg (10.3a') 

and T s i n e - F f = O  or Ts ine=F ' .  

P'is the magnitude of F' and it is equal to ma. So we gqt 

T sin0 = ma. (10.3b1) 

From Eqs, 1V.3a1 and 10.3b' we get as in the previous case 

Motion in Non-Inertial 
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Systemci of Particles which are identical with the values of (3 and T obtained in Eqs. 10 .3~  and 10.3d. In fact Eq. 
10.32 is identical with Eq. 10.3a and 10.3b1 is same as 10.3b. But thereis an element of 
difference. Eqs. 10.3a and 10.3a1 both occur as conditions of equilibrium. But 10.3b occurs 
as an equation of motion whereas 10.3bf arises out of a condition of equilibrium. 

m 
Sometime9 the inertial force is called Moreover, you must remember that the inertial force does not exist for the inertial observer. 
'fictitious force' or 'pseudo-force' 
(pseudo means fa,se) as i t  does not This is because inertial forces experienced in an accelerating frape of reference do nat arise 
arise from any basic interaction. But from physical interactions. They originate in the acceleration of the frame of reference. So 
these names are misleading as the for a non-inertial observer such forces are present. For example, suppose we wish to keep an 
force actually exists for a non-ineriial 
observer. object at rest in a non-inertial frame by tying it down with springs. Then these springs 

would be observed to elongate or contract in such a way as to provide an opposing force to 
balance the inertial force. 

You may now like to work out an SAQ on fie above concept. 

SAQ 3 
a) A glass half filled with water is kept on a horizontal table in a train. Will the free 

surface of water remain horizontal as the train starts? 

b) A man of mass rn is standing in a lift which is accelerating upwards at a rate f. Write 
down the expression for the inertial force acting on the man. Hence prove that he feels 
heavier than usual. 

Now that you have worked out SAQ 3(6), you will be able to appreciate the concept of 
weightlessness. 

10.2.3 Weightlessness 
Suppose that the lift was accelerating downwards at the rate f (Fig. 10.4a). Then the net 
force acting on the man in the frame attached with the lift is given by 

F = m g - m f  
A 4 

= m ( g - f ) j , where J is the unit vector in the vertically downward 
direction. 

Now if the lift were falling freely, i.e. f = g, then F = 0. Thus, the force acting on the man 
is zero. You know that the weight of an object is defined as the force needed to keep it at 
rest. So in the lift's frame, the reaction of F is the weight of the man, since it is the force 
required to. keep the man at rest. Since F is zero in a freely falling lift, the man feels 
weightless. Likewise, every freely falling object is weightless in a frame attached with itself 

Pig. 10.4: Objects feel weightless in a freely falling frame ofreference as they experience tht same acceleration 
as the frame: a) A freely falling elevator near the e ~ ' s  surface; b) B spacecraft orbiting the earth E. 
The person, book and the elevator or spaceship yll hhve the same acceleration towards theearth. 

I You may have seen Squadron Leader Rakesh Sharma floating in the spaceship. In fact, he 
could lift his fellow astronaut on the tip of his finger. How could this happen? 

This is because weightlessness occurs in any orbiting spaceship (~ i~ . - l0 .4b) ,  a$ it is always 
in a stay of free fall. You must remember that weight depends on the frame of reference. The 
astronaut is weightless only in the freely falling frame of the spaceship. So weight!zssness 
does not imply absence of gravitational force. 

Let us now consider the same situation in a frame at rest with r=spct to the e&h. In U s  
frame the net force acting on the astronaut ismg, Therefore, both the spaceship and the 



astronaut have weight with respect to this frame. The astronaut can float because he is 
FalIing towards the earth at the same rate as that of the spaceship. 

So far we have not considered the rotation of frames with respect to one another. We know 
mat a rotating body has an acceleration. So a frame attached with such a body rotates and is 
non-inertial. Our interest in rotating frames of references arises mainly because we live on 
one such frame, the earth. Another example of a rotating frame is the one attached to a 
merry-go-round. We shall be able to explain several natural phenomena by considering 
rotating frames. For example, \he occurrence of weather disturbances, the variation of g with 
latitude and many other phenomena can be explained if we regard the earth as a rotating 
frame. So let us now analyse motion from the point of view of a rotating frame of reference. 

10.3 ROTATING FRAME OF REFERENCE 

In Sec. 10.2.2 we have seen how the second law of motion transforms from an inertial frame 
to a translating non-inertial frame. We shall now see how the second law transforms when 
one goes from an inertial frame to a rotating frame of reference. As in the previous case the 
transformed version of the second law will contain the inertial force. We shall see that in a 
rotating frame more than one inertial force will occur. Our aim will be to determine these 
inertial forces. 

Let us consider a particle of mass m which is accelerating at a rate a, with respect to an 
inertial frame. Then its equation of motion in that frame is 

Again let its acceleration with respect to a rotating frame be a,,,. 

Then its equation of motion in that frame would be 

Let the relative acceleration of the inertial frame with respect to the rotating frame be a . 
Then we have 

or F,! = m (ai,, - a') = F + F', (10.4) 

where F' is the inertial force given by F' = -m a'. Our task now is to determine a' for a 
rotating frame. We know that acceleration is the time-derivative of velocity which again is 
the time-derivative of displacement. So we shall first relate the infinitesimal displacements 
of  a particle as measured from an inertial and a rotating frame of reference. We shall take the 
time-derivative of this   elation to obtain the relation between the velocities of the particle 
measured in these frames. Then the time derivative of the relation between the velocities will 
give the desired expression of the accelerations. So effectively, we shall now study, the 
relations between the time-derivatives of different kinematical variables in inertial and 
rotating frames of reference. 

10.3.1 Time Derivatives in Inertial and ~ o t a t i n ~  Frames 
Let  the motion of a particle of mass m be observed by an inertial and a rotating observer. Let 
the inertial observer 0 have a Carteshn coordinate system ( x, y, z ) as its fiame of reference 
(Fig. 10.Sa). The frame of reference of another observer 0: who is rotating, is given by 
another Cartesian coordinate system ( x ' ,  y', 2 ' ) .  In practice we will be dealing with 
situations where a frame rotates uniformly about an inertial frame. So here we shall assume 
that theset  of axes ( x', y ,' z ' )  rotates about ( x, y, z )  with a uniform angular velocity. We  
are interested in pure rotation, i.e. 0' has no translational motion with respect to 0. So we 
have taken the origin of the coordinate systems to be coincident. Also let us suppose that the 
( x ' ,  y', z ' )  system is so rotating that the z and z'-axes always coincide. Thus, the constant 
angular velocity a, of the rotating system, lies along the z-axis. Further, let the x and x'-axes 
coincide at an instant of time r. 

Motion in Non-Inertial 
Frames of Reference 
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Fig, 10.5: (a)   he inertial frame 
(I, y, z) and the rotating frame (2, y', 
2') (b) A position vector r(t) in the x: 
(and lz') plane. 



Pystems of Particles Imagine now that the particle has a position vector r ( t ) in the .n -plane (and .r' z' -plane) at 
time t (Fig. 10.5b). At time t + At, the position vector is r ( t + At ) and from Fig. IO.ha 
the displacement of the particle in  the inertial frame is given by 

Fig. 10.6: (a) The change Ar in the position vector in the inertial frame; (b) the change Ar' in the position 

vector in the rotating frame; (c) illustrating that Ar and Ar' are not the same; (d) diagram for 

obtaining the relation between [ r'(r) - r(r) ) and a. 

The situation is different for the rotating observer. He also notes the same final position 
vector r  ( t + At ) but in obtaining the displacement he ensures that the initial position 
vector rl(t) in his coordinate system (Fig. 10.6b) was in the x'z'-plane. So he measures the 
displacement as 

Ar' = r' (t + At) - r' (t ). (10.5b) 

It can be seen from Fig. 10 .6~  that the x'z'- plane is now rotated away from its previous 
position. So Ar and Ar' are not the same. From Eqs. 10.5a and b we get 

Ar = Ar'  + r' (t) - r (t). (10.6) 

We shall now express {r' (t ) - r (t ) }  in terms of o and At. For this let us refer to 
Fig. 10.6d. It can be seen that 

I r' (t) - r (t) I = (r sin 0) (a At) 

' where r and stand for r(t) and r (t ), respectively. Again from the right hand rule for 
determining the direction of vector product, we see that (r' (t) - r (t ) ) is along ( o x r ). 
So the vector quantity ( o x r ) At represents {r"(t) - r (t  ) ) in magnitude as well as 
directioh. Thus 

r' (t) - r  (t) = (a x r  ) At. 

Hence, from Eq. 10.6, we get 

Ar Ar' - --  - + O X ~ .  
At At 

Now taking limits oil both sides of above as At -t 0 we get 

dr 
Now - = vi, = velocity of particle in the inertial frame, 

ck 
dr' 

and 2 = vrOl = velocity of the particle in the rotating frame. Thus 

vi,, = v,,~ + o x r. (10.7) 

You must have noted that in the above proof we did not use the special arrangement of axes 
of our choice. So the result given by Q. 10.7 is a general one. 



An alternative way of expressing Eq. 10.7 is as follows. Motion in Non-Inertial 
Frames of Reference 

For obtaining Eq. 10.8 we have only used the geometric properties of r .  So it,can be 
generaIised for any vector A. Thus we have the general result 

We shail now use Eq. 10.8 to determine a' ( = ain -ar,, ). 

We know that ail, = - i.e. the time derivative of vjrl in the inertial frame. 

dv m and a, = (T)r,l , i.e. the time derivative of v,, in the rotating frame. 

On applying Eq. 10.9 for A = vil , ,  we get 

On using Eq. 10.7 we get 

d 
a i n = z  ( v , , ~  + a  X r ,) , , ,+O) X v , , , + o  x ( m  x r ) .  

Since a, is constgnt, we get 

sill = a,,, + o x 
, (:)ro, 

+a, x v , , , + a  x ( 0 )  x r )  

:, a' = 2 n  x v,,, + a, x ( a X r ) (10.10) 

Thus the inertial force is given by 

F ' = -  ma'=-2mm x v ' -nzw x (a, X r ) .  (10.1 1) 

In Eq. 10.1 1 we have written v' in place of vr,, for the sake of convenience. 

Hence, from Eq. 10.4 we can write 

Fro, = F  - 2 n z ( o  X V ' ) - m a ,  X ( m  X r ) .  (10.12) 

Eq. 10.12 shows that the dynamics of motion as.observed from a uniformly rotating frame 
of reference may be analysed in terms of the following three categories of forces: 

i) F: This is the sum of all forces on the particle, arising out of physical interactions or 
due to contact. They may be tensions in strings and forces due to fundamental 
interactions. Only these forces are present in'an inertial frame. 

ii) -2m ( w x v' ): This is called the Coriolis force. It acts at right angles to the 
plane containing co and v' and points in the direction of advancement of the screwhead 
when the screw is rotated from v' towards a, . This force is absent when the particle has 
no velocity with respect to the rotating frame. 

iii) -in c i ~  x ( a, x r ): This is called the'centrifugal force. It always acts radially 
outward. The two observers in the inertial and rotating frame do agree on the position 
vector of a particle at a given instant. Hence r may be replaced by r', provided their 
origins coincide. 

Coriolis force is named after the 
French engineer and mathematician 
Gustave Gaspard Coriolis (1792- 
1843). He was the f~rst man lo 
provide a description of the force. The 
term cenlrifugal comes from 'cenlre' 
and 'fugal'. The latter means to fly ' 

off. 



Systems of  Par t i c l e  We shall now study some examples of these force$. Let us bcgin with the centrifugal force. 

10.3.2 Centrifugal Force 

Fig. 10.7: The centrifugal force. 
Mathematically 01 X (a x r) acts at 
0. But physically - m o x ( o  x r) is a 
force acting on the body. Thus F,,,, 
acts at A and is a vector antiparallel 

Let us first determine the magnitude and direction of the centrifugal force 
F,,,,, = -m o, X (w x r). See Fig. 10.7. w x r is perpendicular to the plane of o 
and r .  Let the angle between o and r be 4. Then the magnitude of w x r is ar 
sin$ = up, where p = r -  sin 4 is the perpendicular distance from the axis of rotation to the 
head of r. Hence o x ( o x r )  is a vector with magnitude 0* p, since the angle between 
o and o x r is 90". From the right-hand rule this vector is directed radially inward towards 
the axis of rotation. Therefore, - m a  x ( x r ) is a vector of magnitude ma2 p. It 
points radially outward from the axis of rotation to the head of r. So we can also write 

A F,.,,,, = -nto x ( w x r ) = ma2 p p = nt a2 rsin 4 0 , (10.13a) 
t o a x  (a X r )  

where 6 is the unit vector along the direction from the axis of rotation to the head of r. If the 
body's position vector r were measured from the centre of the circle in which it is rotating, 

, L 

then 0 = 90°and 

The centrifugal force is familiar to us in our daily life. If we tie an object to a string and 
whirl it around it seems to pull on us. This effect can be explained in terms of the 
centrifugal force. Let's see how. 

Tcos 0 
h 

T sin 0 
.A. . > < 

cent Fcent 

v 
mg mg 

Fig. 10.8: In the frame S the'forces acting are the tension in the string and the wcight of the object. Tcos 0 
balances nrg and Tsin 9 provides the necessary centripetal force. I n  the frame S' apart from the 

tension and weight we have [he centrifugal force. Thcse forces are in equilibrium. 

Suppose that a ball is being whirled around in horizontal circular motion (Fig. 10.8j -.with 
constant angular speed o. Let us analyse the motion of the ball from two frames of refe

r

ence. 
A stationary (inertial) frame S, and a rotating (non-inertial) frame S' that rotates with the 



same angular speed'as the ball. So the angular speed of S' with respect to S is also 0. Look Motion in Non-Inertial 
Frames of Reference 

a t  the force diagrams in the S frame and S'frame. 

in the S frame the ball has a centripetal acc~leration (-a2 r ). The force responsible for this 
acceleration is provided by the tension in the cord. On resolving the force T into its 
components Re get 

T cos 8 = mg, 

In the S'frame, ,the ball is at rest. This is because in this frame alongwith T and mg a 
centrifugal force F,,,, also acts on it. Resolution of forces gives 

= T sin 8 = mu2 r 

We have taken this example also to caution you against the misuse of the term centrifugal 
force. Sometimes you may come across statements like 'The Moon does not fall down as it 
moves around the earth because the centrifugal force balances the force of gravitation and 
hence there is no neb force to make it fall.' 

Any such statement goes against Newton's first law. Why? Because if no net force were 
acting on a body, it would move in a straight line. Any body moving on a curved path must 
have an unbalanced force on it. Now in the inertial frame the moon (or the ball) is seen to 
nlove in a circular path. Thus, an unbalanced centripetal force given by the force of 
gravitation (or the tension in the string) acts on the moon or the ball. 

However, in the rotating frame of reference moving at the same angutar speed, these objects 
would be seen to be at rest. Only in such frames would the centrifugal force balance the 
gravitational force on the moon (or the horizontal component of the tension in the string). 
So remember centrifugal forces arise only in rotating frames ofreference. If we analyse a 
rotating object's motion from a non-rotating fraine there is no such thing as centrifugal 
force. Of course, either frame is valid for analysing the problems. But never use inertial 
forces in inertial frames. They arise only in non-inertial frames. 

Let us round o k  this section with an example of centrifugal force. 

E x a m p l e  2: Centrifuge 
An interesting application of the centrifugal force is a device called a centrifuge. It has uses, 
such as for separating heavy particles suspended in a liquid, for separating chemicals etc. YOU 
may like to know how it works. 

Suppose we have a test tube containing small particles'suspended in a liquid. If the particles 
are heavier than the liquid, they will settle to the bottom, but if the particles are extremely 
small, this will take a long time. To speed up the process, we attach lhe test tube to a 
centrifuge. It is a mechanical device whose operation depends on centrifugal lorce. 

For a rigorous analysis of the situation we need to account for the buoyant forces on the 
suspended particles and the viscous force acting on the mobile particles. Since these forces 
are small compared to the force of gravity and the centrifugal force, we shall ignore them. 

Initially the tube hangs vertically, as in Fig. 10.9a. The centrifuge is carefully baldnced with 
other tubes (not shown in the figure). When the centrifuge is spun about its central vertical 
axis, the tubes feel a centrifugal force (in the frame rotating with the centrifuge) pointing in 
the horizontal direction. The resultant of the force of gravity and centrifugal force acts like an 
effective force of gravity. At high values of angular speed F,.,,,, is much greater than mg. So 
this effective force is much stronger and points almost horizontally (Fig. 10.9b). The Lube 
rises until it is oriented along the direction of the net force F,,,, on it. The surface of the 
liquid orients itself normal to the net force it feels. A particle suspended in the liquid moves 
in the direction of the net force it feels. This is essentially towards the bottom of the t'ube. 
Since F,,,, is much greater than mg for high values of a, the suspended particles settle to the 
bottom of the tube much more rapidly than they would otherwise. 

- 

You may now like to work out an SAQ to consolidate your understanding of centrifugal 
forces. \ 

Fig. 10.9: (a) A test-lube in a 
centrifuge. The dotted line is the axis 
of ihe cenjrifuge: (b) when the 
centrifuge rotales, the centrirugal 
force makes the free end of the lcsl 
tubc swing out. 



Systems of Particles SAQ 4 
(a) When we drive a car too fast around a curve, it skids outward. T o  us it seems as if it is 

pushed by a centrifugal force. If you were standing by tlie roadside watching this happen, 
how would you explain the car's motion? 

(b) A tiny virus particle of mass 6 x 10-l9 kg is in a water suspension in an ultracentrifuge 
which is essentially a centrifuge where extremely high angular speed can be generated. It 
is 4 crn from the vertical axis of rotation. The angular speed of rotation is 
2nx lo3 rads-I. 

(i) What is the effective value of 's '  relative to the frame rotating with the 
ultracentrifuge? 

(ii) What is the net centrifugal force acting on the particle'? 

10,.3.3 Coriolis Force 
Let us consider a particle which moves with a velocity v,.,,, with respect to a rotating frame. 

. .  . 

(a) 
The effect of Coriolis force is relatively easy to visualize at the axis of rotation, where tlie 
centrifugal force is negligible. S o  let 11s begin with that case. 

A rotaling horizontal disc is shown in Fig. 10.10a. The axis of rotation is perpendicular to 
the plane of this papcr at point C which is the centre of the disc. Let us now consider a ball 
passing through C. If friction can be ignored, tlie ball is free of horizontal forces. Therefore, 
it moves in a straight line (the solid line of Fig. 10.10a) with constant velocity v relative to 
the inertial frame. As seen from this frame, the rotating disc turns, say, counterclockwise 
with angular speed w, But as seen from a frame fixed in the disc, it is the inertial frame that 
rotates, with the same angular speed in the opposite sense, clockwise. S o  in the rotating 
frame the ball's trajectory also turns clockwise, following the curved path indicated by the 
dashed line in Fig. 10. lob. Thus, there must be an inertial force in the rotating frame to 
provide the curvature that was not present in the inertial frame. It is indeed the Coriolis 

(b) force. 

Pig. 10.10: Motion of a The magnitude of the Coriolis force can be appreciable on a turntable or merry-go-round. For 
frictionless ball passing over the 
rolaljon axis at  C, as secn from example, if 0 is I rad s-' and I;,, is 5 ms-I the Coriolis acceleration 2 0  I, , , ,  is I 0  ms-'. 

ahovc in (a) all illeni;ll frame equal to the acceleration due to gravity. 
(solid l i n t )  and (b) the rotaling 
frame (dashed line) . The Coriolis force associated with the earth's rotation is much weaker than the effect 

considered above because the earth rotates onIy once per day, corresponding to an angular 
speed 0 = 2n: x lo-' rad s-I. Even at projectile velocities of lo3 nis-I. the Coriolis 

acceleration 2w it,,,, is only of the order of I@' ms-' which is far less than g. That is why 
the Coriolis force is not intuitively fatniliarl However, when the Coriolis force associated 
with the earth's rotation acts over a sufficient period of time. say for several days, it can have 
striking effects. The centrifugal and Coriolis.forces associated with the earth's rotation are 
responsible for  many a natural phenomena. For example, the variation in ,q with latitude. Lhe 
deflection of a moving body, wind patterns in ttie two hemispheres can be explained using 
the concepts of centrifugal or Coriolis force arising on a rotating earth. So let us now study 
the earth as a rotating frame. 

-- 

10.4 THE EARTH AS A ROTATING FRAME OF 
REFERENCE 
-. -- - -- -- - -- 

A n ~ ~ m b e r  of important phenomena are driven by the inertial forces acting in a rotating frame 
of reference attached to the earth's surface. Let us study some of these phenomena. 

10.4.1 The Variation of R with Latitude 

You may know that a person weighs Inore at the poles than at the equator. This effcct arise\ 
clue to the rotation of the earth. In fact we have already stated this result giving the variafion 
of ,q with latitude (recall Eq. 5.44 of Unit 5. Block I ). Let 11s now provc the rc\ui~.  

Let ;I par!iclc P hc at rest witli respect 10 tlie cii~~tli :I\ latitil~lc h near the cartli's s~~r thce .  Tlicn 
in [lie c;~rth'\ I'rtimc ii is $11 h.jcctetl to the f'orcc 01' gra\,i~g F,, (= tlrg) ;lncl Lllc ccn[ril'upal I h ~ c  



P,,t,,, shown in Fig. 10.1 la. The Coriolis force 1s zero'fnr this particle, since it is'at rest in 
the rotating frame. The magnitude of FI.,,,, is given from Eq. 10.13a as 

It 
F ,,,,, = m b 2 R  sin $I = m J R  cos A. [ - .a h = 3 - $ ] 

where R is the earth's radius. Let the resultant of F, and F,.,,,, be F i  . Let us resolve these 
three forces along the radial and transverse directions. Note that on the earth, the radial 
direction coriesponds to the vertical (opposite to F,) and the transverse to the horizontal. Let 
g: and represent the vertical and horizontal components of g', respectively (Fig. 10.1 1 b). 
So we have ' 

m R:, = F,  - F,.,,,, cos h = n ~ g  - nl w'R cos' h 

and m,?: = F,.,,,, sin h = m-02R cos A sin h 

or = w2R cos,h sin A (10.14b) 

Now, the maximum magnitude of the centrifugal acceleration, (F,.,,,,/m), is o?~. Let us 
calculate its value. 

Thus 3 R  <4 ,p and ,?: .: R, i.e. the angle between g:. (the apparent vertical) and g (the real 
vertical) is very small. Let us compute its value. From Fig. 10.1 Ib 

g; wQ cos I. sin h w2R sin2A - t a n n = a =  - - - - 
g t R 21: 

It has a maximum value at I. = 45" which.is 

' 3 1 ~ s  ' ' ' 
= 0.001 7 rad = 0" 6'.. 

2 x'9.8 ms-2 
\ 
\ 

So effectively R;, = 0 and g; = 8'. 
, 

From Eq. 10.14a, we get '. 

A t  the poles )\.=go0 and 8; =g, i.e. g ,,,,, = X .  

A t  the equator = 0 , so that 

.'. = R - w2R,, where f i  is the value of g at equator. 

Now using Eq. 10.15, we may write, 

g * = g - 0 2 R (  1 - ~ i n 2 h ) = ( , q - o % ) + + ~ R s i n ? X  

or g* = gc + a 2 R  sin2 h, 
which is same as Eq. 5.44 of Block I .  

So the value of acceleration due to gravity at the poles will be greater by 3.4 x 10-2ms-2 . 
thaqi t s  value at the equator if we take earth's rotation into account. However the measured 
difference is 5.2 X ~ O - ~  msV2. This discrepancy arises because the earth is not a perfect 
sphere. It is flattened at the poles and bulging at the equator. Due to the centrifugal force 
arising from earth's rotation a plumb line does not point exactly towards the centre of the 
earth. Instead it swings &rough a small angle. You may now like to work out an SAQ on 
theabove concept. 

Motion in  Non-Inertial 
Frames of Reference 

Fik. 10.11 Variation of g with k. 
(a) Resultant of F, and F,,. The 
dotted line E rep&scnls the tiquator. 
PV is the vertical direction at 
p (b) R*, R; and fi; 



Syste~ns of Particles SAQ 5 
a) What must be the angular speed of the earth so that the centrifugal force makes objecrs 

fly off its surface? (Take g = 10 m s -~) .  

b) If the angular Speed is just enough to make this happen, from which part of the earth \ 
would the objects fly off? 

In the above discussion we have considered the body to be at rest with respect to the earth. 
What can you say about a body moving with respect to the earth's surface? We will now' 
have to'take into account the Coriolis force also. Let us analyse this motion. 

10.4.2 Motion on the Rotating Earth 

Let us consider a of mass ni moving with velocity v at latitude h on the surface of 
the spherical earth. So v is tangential to the sphere. Let the earth's angular velocity be W. 
Then in the earth's frame of reference, the force on n7 is given from Eq. 10.12 as 

F = m g - 2 n i o  X v-nzC0 X ( o  X r ) .  

Let us analyse the additional term due to Coriolis force. Refer to Fig. 10.12a. Let us 
decompose CII into a vertical part oV and liorizontal part a,. Then the Coriolis force is given 

by 

Fig.lO.12: Deflection of a moving particle due lo Coriolis force. (a) Breaking o into cornponenls mH and 
(I+,: (b) directions of FH i n  Nand S-hemisphere; (c) clockwise turning of v in N-hemisphere. 

Now a, and v are horizontal, so OH X v is vertical. And wl, x v alone gives rise to the 
horizontal component F, of the Coriolis force. w,, is perpendicular to v. So o, x v has 

magnitude COv v. Now let :be a vector perpendicular to the surface at latitude h, i s .  1 is 
along a;. Then we have that 

A my = wI, r = w cos 6- A)+ = a , s i n ~ %  

and FH = -2n7 ( ov X v ) = -217, w sin h ( i! x v ) 

The magnitude of F, is 2n71~(u sin A. F, is a force perpendicular to v (Fig. 10.12b). So its 
effect is to produce circular motion. Let us see how. 

The effect of F, will be to produce a deflection towards the right in the northern hemisphere. 
F, produces a change in the direction of v. Let the change in v be Av in an infinitesimal 
interval of time At. Fiom Fig. 10 .12~  you can see that the resultant velocity vector moves 
towards the right. F, is now perpendicular to v + Av. So in the next such time interval At. 
the velocity vector will further turn towards right. So the effect of F,, in the northern Y 
hemisphere is to a clockwise rotation of the velocity vector. In the southern 
hemisphere this will be anticlockwise. 



So you can see that this effect of Coriolis force is that it turns straight line motion into 
circular motion. Ttiis result has a number of interesting consequences. For example, rivers 
flowing in the northern hemisphere wash out their right banks, and those in the southern 
hemisphere their left banks. Again in the northern hemisphere the right hand rails of the rail 
tracks are worn out faster if it is a double-track railway. This is because on each track the 
train always goes in one direction. Due to F, its motion has a component to the right from 
the direction of motion. Similarly, the left hand rail is worn out faster in the southern 
hemisphere. 

Air flow patterns in the atmosphere can also be explained by this result. Imagine that 
temperature difference in the various layers of air has given rise to a low pressure region in 
the atmosphere (Fig. 10.13a). The closed curves in tlie figure represent lines of constant 
pressure, called isobars. The pressure gradient gives rise to a force on each element of air. 111 
the absence of other forces winds would blow inward and the pressure in the region would 
become uniform. 

' /  
/ 

low ', 
/ 

(b) 

Fig. 10.13: Air-tlow patterns: (a) Dotted lines represent the isobars: (b) right deilection of the air particles. 

However, the pressure oECoriolis force considerably changes the air flow pattern. Let us 
consider this event in the northern hemisphere. As the air flows inward towards the low 
pressure region it is deflected toward the right as shown in Fig. 10.13b. The result is that 
wind rotates anticlockwise about tlie regions of low pressure. This effect causes most 
cyclones to be anticlockwise in the northern hemisphere and clockwise in the southern 
hemisphere. This effect can be seenquite clearly in the INSAT pictures of clouds taken 
during a cycloi~ic storm. 

So far we have discussed some natural phenomena which arise due to rotation of the earth. 
We can also demonstrate rotation of the earth in a laboratory using the Foucault's pendulum. 

10.4.3 Foucault's Pendulum 

tn 185 1, J.B.L. Foucault for the first time demonstrated the rotation of the earth. He 
suspended a heavy metal sphere of 28 kg  on a wire almost 70m long, The suspension point 
of the  pendulum was free to rotate in any direction. The motion of the pendulum was 
observed from a point above. With successive swings of the pendulum it seemed that the 
pIane of its motion rotated. In lh the plane of the swing changed by 11'. A full circuit was 
completed in about 32h. 

Why does the plane of motion of the pendulum rotate? 

To understand this, we shall visualise this experiment at the North Pole (Fig. 10.14a). In an 
inertial frame the only forces acting on the pendulum are the force of gravity and the tension 
of the wire. Both these forces act in the plane of oscillation. So they cannot rotate it. 
Therefore, with respect to an inertial frame the plane of the oscillation of the pendulum 
wquld remain fixed. The earth would, of course, rotate from west to east under the pendulum 
ollce in every 24h. The rotation of the earth is anticlockwise as seen from the North Pole. 
So t o  an observer standing at the North Pole, the plane of the oscillation would seem to 
rotate clockwise (east to west} (Fig. 10.14b). It can also be explained for other latitudes but 
we a r e  not going into those details here. 

Let us now summarise what we have studied in this unit. 

Motion in Nun-Inertial 
Frames of Reference 

Fig. 10.14: Foucault's pendulum. 
(a) The pendulum on the N-Pole. The 
arrow indicates the direction of 
rotation of the earth; (b) mlation of 
the plane of oscillation. 



Systems of Particles 
SUMMARY' 

I 

e The frames of reference accelerating with respect to each other are called non-i'nertial 
frames. 

e The net fprce acting on any object in the non-inertifil frame S' having an acceleration a 
with respect to an inertial frame S is made up of two parts: the force F ,  acting on the 
object in the S frame and an inertial force equal to -m a. Inertial forces arise only in 
non-inertial frames. 

e The equation of motion of an object in a rotating frame of reference is given as 

where F is the suin of all forces acting on the object as seen from the inertial frame. 
The second and the third terms are the Coriolis and the centrifugal forces, respectively. . 

e Any frame of reference attached to the earth is a non-inertial frame of reference. Rotation 
of the earth is responsible for many a natural phenomena, such as variation of g with 
latitude, deflection of moving bodies, etc. The earth's rotation can be demonstrated with 
the help of Foucault's pendulum. 

Yl 10.6 TERMINAL QUESTIONS 

1. An inclined plane (Fig. 10.15) is accelerated horizontally to the left. The magnitude of 

, the acceleration is gradually increased until a block of mass m, originally at rest with 
Fig. 10.15: Diagram-for TQ I respect to the plane, just starts to slip up the plane. The coefficient of static friction 

between the plane and the block is 0.8. (It is given that sin 37O = 3/5, g = 10 r n r 2  ). 

a) Draw diagrams showing the forces acting on the block, just before it slips (i) in an 
inertial frame fixed to the floor andxii) in the non-inertial frame moving along with 
the block. 

b) Find the acceleration at which the block begins to slip using both the force 
diagrams (i) and (ii) of part (a). 

2. a) ' A space station of radius 10m Spins so that a person inside it (Fig. 10.16) has a 
' 

sensation of 'artificial gravity' when afloat in space. The rate of spin is chosen to 
attain g = I0 ms-?. Find the length of the 'day' as seen in the spacecraft through a 
window W. 

b) A 4.0 x lo5 kg train runs south at a speed of 30 ms-I at a latitude of 60' N. - 
Fig. 10.16: Diagram for What is the horizontal force on the tracks? What is the direction of this force? 
T Q 2a. * 

3. Your weight is measured to be equal to W when you are at rest with respect to the earth. 
Will your weight be different from W when you are in motion with respect to the 
earth ? 

10.7 ANSWERS 

S A Q s  
I .  i) Since the car is moving along a curved path its velocity vector is continually 

I changing its direction. So it has a non-zero acceleration with respect to the man 
standing on the road. So the frame attached to it-is non-inertial with respect to-the- 
man. 

ii) Since the raindrop has attained a terminal velocity it is falling with a constant 
velocity with respect to the ground. So the frame attached to it is inertial with 
respect to the ground. 

iii) An electron moving in a uniform magnetic field experiences a force. So it will be 
accelerating with respect to a pole piece. Hence, Jhe frame attached to the electron is 

96 non-inertial with respect to the pole piece. 



2. Differentiating Eq. 10.1 twice with respect to time, we get Motion in Non-1nerti:ll 
Frames o f  Feferenrc 

or F q = F p  -ma. 

3. a) In order to start, the train has to accelerate. Let this acceleration.be a, and 
directed along the x-axis. Now, following Eqs. 10.2a and 10.2b, we can write the 
total force acting on the water in the frame of reference of the train as (see Fig. 
10.17) 

Fig. 10.17 

t . where m is the total mass of the water and the glass. 
L 

4 g=-fit and a = a l .  

The surface,of water takes up a position normal to the force Fg as shown in Fig. 
10.17. 

b) Let the lift be accelerating in the z-direction (Fig. 10.18). 'The inertial force acting 
. on the man is given by 

F' = -mf, 

where m is the mass of the man. So the total force on the man is given by 

F  = mg + F'= mg - m f .  

But g = -fit, f =&. 
Hence, F =-m ( g  + f )  k. 
So the magnitude of the force on the man is greater than mg. Hence, he feels Fig. 10.18 

heavier than usual. , 

a) The observer on the roadside will analyse the situation as follows: A centripetal 
force ( = mv2/r ) where m is the mass of the car, v its speed and r' the radius of 
curvature of the bend, is required by the car to move along the curve.qYou may 
recall from Sec. 4.3.1 of Block 1 that this is normally provided by way of the 
banking on the road an4 the friction between the tyres and the road, Let the 
contribution due to banking and friction be F, , F,, respectively. Then the equation 
of motion of the car will be 

Now, the left hand side is a fixed quantity depending on m. So if v is large, r should 
be large in order tp make the above equation hold. In other words, the car has to 
move more outward to have a large r, when it is moving very fast. 

b. i) For this problem 

Since this is much larger than the usual value of '8' the effective value of 'g' 
can be considered to be equal to 1.6 x lo6 m s -~ .  

ii) The  net centrifugal force = mw2 r, where rn = 6 x 10-l9 kg. So its value is 
( 6 x l@19 kg ) x ( 1.6 x lo6 m ~ - ~ )  = 9.6 x 10-l3 N. 

The required angular speed will correspond to g* = 0. We know from Eq. 10.1 5 that 
R* = g - @ R cos2 A. SO the required condition is 

So the minimum value of w corresponds to the maximum value of cos2 h, i.e. 1 for 
D 

h = 0 . This happens at the equator. And the required angular speed of earth is given 

by 



Systenls of Particles 

c"~1, ; I l  = 

where R is the equatorial radius of the earth = 6.37 x 1O6'rn. 

b) A1 equator as explained in the answer to part (a). 

Terminal Questions 
1 ,  a) Refer to Figs. LO. 19 ( a and b ) for parts ( i)  and (ii), respectively. 

a cos 8 

(a)  

Fig. 10.19: F, is the force of friction, N is thc nonnal reaction and nlg i s  the weight of the block, a) The 

rcsultan~ of three fories %, N and n ~ g  is equal to ma. Components of a along 8 and ?have also 

been shown; (b) In addition to F,, N and mg. we have F', the inertial force ( = -ma ).The 

farces F,, N, mg and F' are in equilibrium. 

b) Using the force diagram for part (i), i.e. Fig. 10,19a, we have the equation of 
motion 

m g  + N + F, = ma. (10.16) 

\ 
Now, let the unit vectors along F, and N be f and &,respectively. So we have 

A A A 
mpcose(-p ) + m g  s i n 8 ( 1 ) + ~ ( $ ) + ~ ~ i l ) = m a c o r 8 ( f ) + m o s i n 0 ( ~ ) .  

Thus, 

:. F ,  + mg sin 8 - m a  cos 8 = 0 

and N - mg cos 8 - ma sin 8 = 0 

Now if a be the magnitude of acceleration at which the block just begins to slip up  
we have F, = JAN where p = 0.8. 

So from Eqs. 10.17 we get 

p N = r n ( a c o s 8 - g  sin 8 )  

or p m ( g c o s 8 + a  s i n 0 ) = m ( a  c o s 8 - g s i n 8 )  

pcos  8 + sin 8 
o r a = g  

cos  8 - psin 0 

Since, sin 8 = 0.6, cos 8 = 0.8 



Using the force diagram for part (ii), i.e. Fig. 10.19b, we have, 

Since F' = -ma, we get 

This is same as Eq. 10.16. So the succeeding analysis will follow as in the 
previous case and we shall get a = 39 m ~ - ~ .  You must have noted that we come 
across an equation of motion in the inertial frame, but a condition of equilibrium'in 
the non-inertial frame. 

i 

I 2. a) Let the required rate of spin be w, Then the corresponding length of day is given by 

Since the person inside has a sensation of artificial gravity, we have 

d r  = g, where r = 10m. 

b) Refer to Fig. 10.20. NPM and QPR are, respectively, the longitude and latitude 
through P,  the position of the train. AB is the equator. The horizontal force is due 
to the Coriolis force given by 

FCor = -2m'( o x v). 

Since the angle between oo and v is ( 180" - k ) (see figure caption), the magnitude 
of the horizontal force is 2 mvw sink, 

where m = 4.0 x 105 kg, v = 30 ms-I, w = 
2n 

rad s-I and h = 60". 
24 x 60 x 6 0 .  

So the magnitude of the horizontal force on the tracks is 

The direction is opposite to ( m x v ) . Now, ( o x v ) points tangentially to the 
latitude QPR in the sense Q to P. So Fcor will be tangential to QPR in the sense P 
to Q, i.e. towards west. 

3. The weight of your body is given by 

where m is your mass. If you are at rest with respect to the earth F,,, = 0. But if you are 
moving F,,,. # 0. So your weight will be different from W when you are in motion with 
respect to the.earth. 

Motion in Non-Inertial 
Frames of Reference 

Fig 10.20 : Diagram for terminal 
question 2b. You must note that 
f N 0 P  = 90" - A.  IL i s  equal to the 
corresponding angle ( f  WPV). And 
fVpC = 90". So LWPC= 90' - 
h + 9Q0 = 180' - h 
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APPENDIX A 

CONIC SECTIONS 

The curves obtained by slicing a cone with a plane not passing through its vertex are called 
rotiic sections or simply conics. If the cutting plane is parallel to the side of the cone, as in 
Fig. A.la, the conic is aparabola. Othcrwise tlie intersection is called-an ellipse or a 
I~yperbola, according as the plane cuts just oneor both nappes (portion of the cone) as 
shown in Figs. A.lb and A.lc. Circle is the special case of ellipse when the intersecting 
plane is parallel to the base of the cone (Fig. A. ld). 

Fig.A.l: Conic sections: P - Parabola, E - Ellipse, H - Hyperbola, C - Circle I A 

We shall now present a unified treatment for all conics. For this we shall define a term called 
'eccentricity'. 

A. l  Eccentricity and Polar Equation of a Conic 
Refer to Fig. A.2. A conic section may be defined as a curve traced out by a point moving in 
a plane such that the ratio of its distance from a fixed point F (a focus) and a fixed line AB (a 
directrix) is constant. This constant ratio is called the eccentricity. It is denoted by e. 

I f  0 < e < 1, the conic is an ellipse. If e = 1 it is apar'abola and if e > 1, it is a hyperbola. 
I 
t B  

I n  the Fig. A.2, let P be any point on the conic. PQ is perpendicular on AB from P. Then Pig. A.2: Polar equation of a conic 

according to the definition, 

U s i n g  Eq. A. 1 we shall obtain the polar equation of a conic, when the pole (ie. the origin of 
the plane polar coordinates) is inside the curve. Let the pole be at F. The polar axis Fx is so 
chosen that it is perpendicular to the directrix. L is a point on the conic such that FL is 
perpendicular to Fx. FL is called the semi-latus rectum of the conic. Let FL = p. LM is 
a g a i n  the perpendicular from L on AB. Let LM = D. 

N o w ,  w e  have 

F P = r  and QP=D-- rcosO.  

S o  from Eq. A.l ,  we get 

But fro'm the definition of e, we find that 

So, w e  get from Eq. A.2 that 

r = P 
1 + e cos0 ' 

64.3) 

Eq. A.3 is the polar equation of a conic with pole inside. 

The  three types of conics have been shown in Fig. A.3. Because cos (-8) = cos 0, all the 


