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4.1 INTRODUCTION 

In Units I to 3 you have studied some important concepts in  mechanics, such as 
displacement, velocity. acceleration, force. linear momentum, work and energy. You have 
also studied two important conservation principles: Conservation of linear momentum and 
Conser'vation of energy. However, our developmen1 of the concepts of mechanics so far has 
been restricted in one important respect. We have not developed techniques to describe and 
analyse the angular motion of particles, in  particular their rotational motion, 

You rnay say that we have studied the problerns of uniform circular motion and projectile 
motion using these concepts. But the world is full of objects that undergo rotational  notion: 
From rotating galaxies to orbiting planets, from merry-go-rounds, bicycle wheels and 
flywheels to rotating ballerinas (dancers) and acrobats. In principle, we can analyse all such 
motions using Newton's laws by applying them to each particle of the object undergoing 
angular motion. But in practice it is a difl'icult task. especially for extended bodies, because 
the particfes number in thousands. What we need is a simple method for treating the angular 
motion of an object as a whole. 

In most cases. we can study the angular motion of an object in terms of the angular motion 
of a point on it. Therefore, in this unit we shall study the angular motion of a particle and 
develop related concepts, such as angular displacement, angular velocity, angular 
acceleration. torque and angular momentum. Using these concepts, we shall study angular 
motion of rigid bodies in Unit 9. In the next unit, we will turn our attention to gravitation 
and other forces in nature. 

Objectives 
After studying this unit you should be able to: 

e compute angular displacement, angular velocity and angular acceleration of a particle 
undergoing angular qotion 

e express displacement, radial and transverse velocities, and radial and transverse 
acceleration using plane polar coordinates 

r relate the kinematical variables of angular motion and linear motion in their vector forms 
e solve problems related to the concepts of torque, rotational kinetic energy and angular 

momentum of a particle 
a apply the law of  conservation of angular momentum. 

4.2 KINEMATICS OF ANGULAR MOTION 

Let us  begin our study of angular motion by considering a particle moving in a circle about a 
fixed axis passing through the centre and perpendicular to the plane of the circle. (Fig. 4.la). 



Angular Motion 

Pig. 4.1:(a) A particle P rotating anticlockwisc i r ~  a circle rl~out a fixed axis, known as the avis of rotation; 
( 1 ) )  the angular position 0 of the particle at an instant 1 ;  (c)  the particle 1' undergoes a11 angular 
c1is~)lacement A0 (= 0:- 0 , )  in time A I ( =  1, - 1 , ) .  

As you know from Sec. 1.4, we need only a two-dimensional frame of reference to describe 
this motion (Fig. 4.1 b). The angle 0 is the angular position of the particle at P with respect to 
the reference axis, namely the x-axis. By convention, we take 0 to be positive for 
anticlockwise rotation and negative for clockwise rotation. It is given, in radians, by the 
relation 

S 0 = -  
r (4.1) 

You arc pcrhaps morc familiar 
where s is the arc length shown in Fig, 4.1 b and I .  the magnitude of the position vector r of with the unit of degrees for 
tlie particle. If the particle rotates more than once, then 0 will take the increased value' measuring angles. l"hc unit of 

accordingly. For example, let the particle be at P at the instant t after completing two radiant is related to degree by I the Foliowing formula: 
rotations around the circle starting from A. Then its angular position at the instant t will be 
given by the angle (2 x 2n + 0) = ( 4 ~  + 0). Now, let the particle rotate anticlockwise. Let its 360" = 2~ Tad: 

angular positions at time t ,  and at a later time t, be 0, and 0,' respectively (see Fig. 4.1 c). %=3.1415927 .,. 
The angular displacement of the particle will be 0, - 6, = A8 during the time interval 

-7 
I, - t, = At. Notice that we have used the term 'angular displacement'. Is this a vector 
quantity like linear displacement? Let us find out and discuss angular displacement in 
somewhat greater detail. 

4.2.1 Angular Displacement 
If we say that angular displacement is a vector, then, firstly, alongwith a magnitude it should 
have a direction. Secondly, angular displacements should add like vectors. As you can see, 
the magnitude of the angular displacement is the angle through which the particle turns. 
What is the direction of angular displacemeqt? 

In a sense the idea of a direction is associated with angular motion. We have both clockwise 
and anticlockwise rotations. Let us represent qn anticlockwise rotation of say, 0 rad by an 
arrow of a certain length pointing id a certain direction. Then a rotation of -0 rad will be an 
arrow of the same Isngth, but pointing in the opposite direction. But in what direction should 
the first arrow point? 

It obviously cannot be the direction of the particle's position vector at its final angular 
position. Why? See Fig. 4. I b again. For an anticlockwise rotation through an angle 0, the 
direction of angular displacement would be OP. But for a clockwise rotation through the 
same angle, its direction will be OQ. So, two equal and opposite rotations (clockwise and 
anticlockwise) of any magnitude will not in general be antiparallel. Thus, with this choice of 
directions, angular displacements will not be vectors. 

Thedhow can we define the direction of angular displacement? You must have handled a 
screw-gauge at echool. There the rotational motion of the screw is translated into the 
forward motion of the screw-head which takes place along a straight line. This straight line 
can define the direction of the rotational motion of the screw. This straight line is essentially 
the axis of rotation of the screw. 

So we can define the directi-on of angular displacement to be along the axis of rotation, But 
how do we represent a clockwise or an anticlockwise rotation along the axis of rotation? 59 



Concepts in Mechanics We follow the right-hand rule to make the choice. We curl the fingers of our right-hand 

12 around Lhe axis, in the direction of rotation of the particle. The extended thumb points 
along the direction of the angular displacement (see Fig. 1.9b). Thus, for the particle of 
Fig. 4.1 (a), the direction of 0 will be along the positive z-axis. In Fig. 4.1 (b), the direction 

2 of 0 will be perpendicular to the page and the point up out of the page. 

3 VVhat wc1uPc1 bc the xnagniiudr: and dirt.:ctio~l of. the anguliir displacement in a clucku:ise 

.- r'ohition of a %-aa.rid of a cli.~cl; frc)111 5 to 9'? 

Having specified the direction of the angle turned by a rotating particle, let us see whether it 
satisfies the laws of vector addition. Let us consider the commutative law of vector addition: 

(a) 
A + 1B = B + A. What happens in the two-dimensional case when the particle remains in the 
same plane .while rotating about a fixed axis? You can find the answer with the help of a 
clock as shown in Fig. 4.2. In Fig. 4.2a slarting from 12. the clockhancl is given a clockwise 
rotation 8, = 2n I3 rad and then an anticlockwise rotation 8, = n/2 rad to get the resultant 
8, + 8,. In Fig. 4.2b the order of rotation is reversed : starting from 12, the clockhand is first 
rotated anticlockwise by n12 rad and then clockwise by 2n13 rad, giving 8, + 8,. The 

9 resultant is the same. Now perfonn a similar exercise with different magnitudes of 8, and 8,. 

what do you conclude? Clearly, if the particle remains in the same plane and rotates about a 
fixed axis, the angular dispIacement is a vector quantity. Does this law hold for rotations in 
three dimensions? Study Fig. 4.3 and perform the rotations with the help of a book for an 
answer. 

(b) 

Fig. 4.2 

( t ~ )  (c)  (d) 

Fig. 4.3: Rotation through finite angles: (a)  The book is rotated by an angle oTd2 rad anticlockwise around 

the )-axis ( 0 7 ) and then by d 2  anticlockwise around theyaxis ( Q j). The result;~nt is 0, = 9 ,I + ; 
A Y 

Ib) the rotatdns are the same but in reverse order. i.e. 0, = O , ,  j + Q , . Clearly, 0, + 0. Rufation lhr iuCh 

infinitesimal angles: (c) the book is rotated by a small angle, sa; d.36 rad anticlockwise around x snd y=uxes; 

I I 
I I I  

( d l  the rotations are the same but in reverse order. I n  this case 0, = 0,. I n  all these figures, the origin of the 
I 

I I  I 60 coordinate axes remains at the centre or the book, and the axes remain parallet to themselves. 



What is the answer? Finite angular displacements in three dimensions are not vector 
quantities, but three-dimensional infinitesimal angular displacements are vectors. 

Anguiar Motion ' I  
I 

Having defined the angular displacement and studied its vector nature, you are ready to learn 
about angular velocity and angular acceleration. 

?I" 
4.2.2 Angular Velocity and Angular Acceleration 
The average angular speed of a particle undergoing angular displacement A8 in time At is a 
If A0 is infinitesimal, then G will be a vector. It will be in the same direction as A 9  arid wc 

will call it average angular velocity. When the angular speed changes with time, we define 
instantaneous angular velocity as 

A0 dB a= lim -=- 
A,+O At dl (4.2 b) 

d8 
de is a vector as it is an infinitesimal angular displacement. We can write d0 = - dt. dt 

do Since dt is a scalar, - will he a vector, i.e. the instantaneous angular velocity wis a 
dt 

vector quantity. Its direction lies along the axis of rotation and its sense is given by the right- 
hand rule. Study Fig. 4.4 to understand the vector nature of o better. 

If the angular speed of the particle in Fig. 4.1 c is riot constant, then it has an angular 
acceleration. If a, and or, are the instantaneous angular velocities of the particle at times t ,  
and t,, respectiSely, then the average angular acceleration ii of the particle P is defined as 

W 
r E 

The instantirneous angular scccleration i 4  w 

Therefore a which has adirectioo along Am lies parallel or antiparallel to the axis of rotation 
(see Figs. 4.5 a and b). When 61 changes only in direction, the angular acceleration vector is 
perpendicular to a, (see Fig. 4.5 c). Work out the following SAQ to prove this yourself. 

SAQ 2 
Show that a is perpendicular to a, if w is a constAnt. [Hint: For a to be perpendicular to 

Am - duo a= lim --- 
A,+0 A[ dl (4.3 b) 

What is the direction of the angular acceleration? Study Fig. 4.5. If the angular velocity 
changes only in magnitude hu 

m f *  1 AO Pig. 4.4: The direction of the 

d d a, a - IXI = 0. Since w is a constant, - (d) = - (03 . a) = 0.1 
dt dt 

ai 

In most general cases, both the direction and magnitude of the angular velocity may change, 
in which case a is neither parallel nor perpendiculat to a, 

61 

ongular velocity is given by the 
I\  right-hand rule. 

(3) ([I) (c) 
Fig. 4.5: (a) An increase in angular speed alone leads to a change Aa(= co/ - q) in the angular v,elocity that 
is parallel to a,. So a is also parallel to a. Here a, and a,are the initial nnd final angular velocities, 
respectively; (b) a decrease in angular speed means that Amand hence a are antiparallel to co,; (c) when 
angular velocity changes only in direction, the change Amand hence a is perpendlcular to angular velocity. 



Concepts in Mechanics 
I ' 

You must have observed by now that the rotation of a particle about a fixed axis has a 

I correspondence with the translation of a particle along a fixed direction. The kinematical 
variables 0, wand a for angular motion are analogous to x ,  v and a for linear motion: 8 
coiresponds to x ,  o to v and a to a. You are already familiar with the relations between 
kinematical variables x, v,  a and t for linear motion with constant acceleration. In the same 

i~ manner we can derive the four equations linking 0, o, a and t for constant angular 
acceleration. We are stating these relations in Table 4.1 without giving their proof. 

Table 4.1: Angular and llnear position, speed and acceleration 

Linear Quantity 
or Equation 

Angular Quantity 
or Equation 

( Position .x Angular position 8 1 
dr Speed v = - 
dt 

Acceleration a = !!! = d2s 
dl dl2 

Equations Tor Constant Accclcration 
T =I(\, + b . )  

1 1 '  

\. = Y,, + (11 

. v = 1. 1 + !!.,I,' 
1' 1 ,.! = ,. ! + 7 , -Ll.I 

dB Angular speed a = - 
dt  

Angular nccelarstion a = $ = 2 

Notice that you get the second set of equations merely by substituting 8 for x, o for v,  a for 
u and the initial angular velocity a, for v,, the initial linear velocity. We have seen that a 
correspondence exists between linear and angular kinematical variables. Can we establish a 
relationship between the two sets of variables for angular motion? The answer is yes. We 
will find that these relations are easier to derive if we use plane polar coordinates. 

4.2.3 Relating Linear and Angular Kinematical Variables 

In your school mathematics courses, you may have studied plane polar coordinates r and 8 
of the point P (x, y) ,  .. shown in Fig. 4.6a. These are related to x and y by the equations: 

. . 

You also know that 
4 h 

r = xi + yj. 

0 
6 in the plane-polar coordinate system; 

4 n 
(c) unit vectors rand 9 have different directions at points P ,  md P!, i.e. they vary with the position of the 

particle. 
A 

We now introduce two new unit vectors and 8, perpendicular to each other which point in 

the direction of increasing r and in the sense of increasing angle 8, respectively (see Fig. 
4 h 4 ,- 

4.6b). There is an important difference between the two sets of unit vectors (i, j) and (i- ,0): 
4 

i and j have fixed directions but the directions of and 8  ̂vary vGith the position of the 
particle as you can see in Fig. 4 .6~ .  Since E is a unit vector along r, we can write 

n 
r = r r .  (4.6) 



We can use Eqs.-4.4,4.5 and 4.6 to find the relationship between ;, 6 and 7, i. From Eqs. 
4.4,4.5 and 4.6, we get 

~ r l  A 
A 

r = - = - ( r c o s 0 i c r  sin 0j), 
I' r 

f i  

or P= cos0i + sin 8 j. 

So a unit vector in the direction making an angle 0 with the positive x-axis is 
A h A 

cos0 i + s i n  0 j.. 0is a unit vector making an angle (1~12 + 0) with positive .y-axis 
n 

(see Fig. 4.hb). So in ortier to obtain 8 we repliicc 0 in  the expltssion of $ by (1~12 + 8). 
4 & A 

So. 0 = c o s ( O + ~ / 3 ) i + s i t l (  e + n / ? ) , i .  
A h 9 or 0 = -sin 8 i + cos 0 J. (4.7b: 

A 

Notice that although and 8 vary with position, they depend only on 8, and not on r. 
Before proceeding further, we suggest that you try the following SAQ to become used to the 
polar coordinates: 

SAQ 3 
A A A 

a) Sliow that thc results I I. 1 = 1. I G I=  1, kind I. @=0 arc consiste~tt with Eqs. 4.7. 

and 8 ' s  of A and W refer to the snnle point in  the space. 
A. 

C) Show that 3 x 8 = k. 

Now that you are familiar with the plane polar coordinates let us first derive the expressions 
of velocity and acceleration for circular motion in terms of these coordinates. In Sec. 1.4, 
you have studied they relations for unifornz circular motion. You know that for constant 

I '  2 
W, v = ar  and (lR = - = '0 /.. Let us now consider circular motion with variable angular 

I' speed. 

Velocity and acceleration for circular motion in polar coordinates 
t lr Recall tliar v = - . Now. we have from Ecl. 4.6. 
r I /  

A 4 

I r J - 1 I - I A t l i  v =  ----- r+l.-=().+/,-=/.- 1 /r '" l i r  (Since r. ir ii collstia~, - = 01 
( I /  (11 (11 (11 rlt rlt 111 

Notice that ĥ  is non-zero. Let us now evaluate it. dt 
Differentiating Eq. 4.7a with respect to time we get 

dr^ d A d A A A 

- = - ( C ~ ~  O)i + -(sin 0) j , since i and j are constant unit vectors, 
dl dt dt 

5 = C) (- sin 0 I + cos 0'1) 
d0 where we have written - as 0. Using Eq. 4.7b, we get 
dt 

Thus, for circular motion 
A 

v=ri) 'g  
A 

o r v = r o 0 , .  
L ' 

(4.9) 

d8 
since o = -.Thus, the velocity of a particle moving in a circle has the magnitude o r. It is df 
directed along 6 ,  which is along the tangent to the circle. You can see that Eq. 4.9 holds for 
uniform circular motion also. 

Again differentiating Eq. 4.9 with respect to time, we get the acceleration for circular motion 
in plane polar coordinates: 

dv ' d r  .n d6 a = - = - - 8 0 + , - ~ ~ + r . ~ -  
dr dt clr dr ' 

Angular Mot ion 

I n  thc text, whenever we use 
the l e r ~ r ~ s  'velt~city' and 
'acceleri~tiotl', rve mcnn 'linenr 
velueity' and 'liocar 
acccler;~ticr~~'. 
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Concepts in Mechanics ..- . dij .. d e  d20 
= r0O + ra -, where 8 = - = - 

dt dt dt2 

'.h .d$  
or a = r08 + 1.8 - dt 

d 6  To evaluate , we differentiate Eq. 4.7b with respect to time: 
dt 

P A 

= -8(cos e I +  sin 0 j). 
Using Eq. 4.7a, we get 

So, the acceleration of a particle moving in a circle is 

a = r8@ - r(e)2F 
dw *&  

Since o = 0 and a = - = 8, we get 
u't 

Thus, for circular motion a has a radial component a, opposite to inn direction, which 
gives the negative sign. It also has a transversecomponent a, along @ . You can see that the 

D transverse component ar vanishes for uniform circular motion. You may now like to work 

/ out an SAQ to concretise these ideas. 

.v SAQ4 - - - -  A gl-indst~tic of r:~clius 0.5 111 is r.ol;~ting anticlockwise ;I( a constant angular accclcralio~~ ix 

of 3.0 rad s-' (Fig. 4.7). Start from a reference horizontal line OX at time t = 0, when the 
grindstoile is at rest and find the following for a particle P situated at the rim of the 

Fig. 4.7: A grindstone rotatlng 
about n fixed axis 408. The 
particle P on its rim execlltes a) Its angular displacemerlt and angular velocity 2.0 s later. 
circular motion. 

b) Its linear velocity, radial and transverse acceleration at the end of 2.0 s. 
&& 

In Eqs. 4.6 to 4.1 1 we have expressed vectors r ,  v and a in terms of scalars 8, o and a. What 
is the relation between the vectors r, v, a and 8, o ,  a? Let a particle rotate in a circle about 
the :-axis. The vectors r. v. a and o, a will be as shown in FIE. 4.8. Let the angle between O 

and r be @. Then, since LPCO = 90°, the radius CP of the circle will be I .  sin $. and 
v = or sin 0 

If we now sweep a3 into r through the smaller angle between them and use the right-hand 
rule, we find that the extended thumb points towards v.  This gives the relation 

I 

v =l;bo.xr, (4.12a) 
hv d Nod, a = - = - ((0 x r) 1 

dt d t  
d 

Since z ( ~  x  B) s ($) x B + A x ($1, we get 

a=- dr d m x r + w x - = a x r + r o x v .  dt dt 

We can once again prove that 
Fig. 4.8: Vectors r, v ,  a,. a,. a 
and a for II particle rotating in + = Q x ~ ,  (4.12b) 
a circle about the z-axis. \ 

a, = 0 x v, giving (4.1 2c) 

a = a,+ a,. (4.12d) 



Eq. 4.12b follows from the same reasoning as we used for v. a, = a r  sin @, and its direction 
is obtained from the right-hand rule ppplied to a and r. Now 

aR = o2 r sin @ = w (or  sin @) = ov. 

The direction of a, is along PC. It is the same direction in which the right-hand thumb points 
if co is swept into v through the smaller angle. 

Let us now express r,  v and a in terms of plane polar coordinates for any general angular 
motion of a particle about a fixed axis of rotation. 

Eq. 4.6 for r holds good for any kind of angular motion. For velocity we have 

Using Eq. 4.8, weset 
h . A  

v = i ' r + r @ e  = v,+v,. 
h A 

where v, = i r , v ,  =I.&@ 

Similarly, acceleration a is given as: 
A 

Eq. 4.14 means that the acceleration for general angular motion has two components. One is 
along r  ̂and is called the radial component. The other is perpendicular to and is called 
the transverse component. 

Eqs. 4.6 to 4.14 enable us to describe the motion of a particle undergoing angular motion 
either in angular variables or in linear variables. You may wondq why we need angular 
variables for describing angular motion, when they appear more complicated. The answer is 
that the angular description is more useful than the linear description when we discuss 
angular motion. For example, it is much more convenient to use these ecluations to find out 
the orbits of planets. You will see this in Unit 6. Similarly, for describing the motion of a 
rotating body we will have to consider the motion of various points on it. It is clear froin 
Eqs. 4.6 to 4.14 that different points on the body will not have the same linear displacement, 
velocity or acceleration. But all points on a body rotating about a fixed axis (which does not 
pass through the body) have the same angular displacement, velocity or acceleration at any 
instant. Therefore, we can describe the motion of the whole body in a simple way if we use 
angular variables 0, o and a. You will appreciate this point better when you study Unit 9. 
We end [hi.; section on the kinemn~ics of :unguliu motion with iin example iuncl run SAQ. 

Angular Motion 

Example 1: Acceleration of a bead on a spoke of a wheel 

A bead moves outward with a constant speed u along the spoke of a rotating wheel. It starts 
I 

from the centre at time t = 0. The angular position of the spoke is given by 0 = o r, where o 
is constant. Find the velocity and acceleration of the bead. 

Let us choose the reference frame as shown in Fig. 4.9. Here + = u and i) = o. The radial @ - -. X 
position r can be obtained by integrating with respect to t the relation i. = u. 

Jdr = judr 

or r = us + c, where c = constant of integration. Fig. 4.9: Acceleration of a bead 
on n wheel's spoke 

Att=O,r=O.Thus,c=O. 

From Eq. 4.13 



i " 
Concepts in Mechanics We find that the magnitude of radial velocity is constant, whereas that of the transverse 

velocity increases linearly with time. 

The acceieration is given by Eq. 4.14: . A 

a = (i ' . - r8' $ 2ie)B 
2 -+ A 

= -UtW r t 2uWB. 

The magnitude of transverse acceleration is also constant. 

. :  . :i; 1' 
1 i .  
$ ? : :  
: .', , 
; _ j . '  

. t . .  

1;" 
'. .! E 
. 1 :  

' :  !i:. 
',.,: :' ; 5 . : .  

f : ' :  : ) :  
, . I  I .:' 
, i r : , .  
' I t ,  

a) Fi111.i the \~ulncity ~ a l ~ t i  aci:zlcr;~tion of l lx pal.iicle. 
I 

b)  SIloili rll:lc [hi. rnclial nr:cr:li.rutio~~ of'lhe pitsticli. is zn i i  ivllei~ 8 == --;-- r id.  
d 2 

[Hilit: U ~ P  Eij:<. -I.-/, 4.1 3 iii!CB. 4.. I;&.]. 
. . . .- 

So far we have described angular motion. We will now study the causes of angular motion. 

4.3 DYNAMICS OF ANGULAR MOTION 

As we have seen earlier circular motion is the simplest kind of angular motion. Qere are 
numerous examples of circular motion in nature. Many satellites are in circular orbits, the 
orbits of planets are nearly circular. The earth's daily rotation canies you around in circular 
motion. Pieces of rotating machinery, cars rounding curves etc., describe ciscular motion. 
Let us see what forces cause a particle to execute circular motion. 

4.3.1 Circular Motion 
We will first consider the case of uniform circular motion about which you have read in 
Sec. 114 of Unit 1. Recall that in this case, the particle moves in a circle with a constant 
~ingt~liir speed. 'rliuh, both 1 .  :md 01 :ire coilstant. Thc force F is given by Ncw~on's second 
I:IW ;llr F = nra. 

Wc uhe (he expression afaf roln  ELI. 4.1 1 .  I n  this case a is zero as o) is con~r:in~. So wc get 

v 
You can recognise the term 7 as the centripetal acceIeration of Eq. 1.30~.  The force 
defined by Eq. 4.15 has a magnitude mv2/r and is directed toward the centre of the circle. 
The negative sign in Eq. 4.15 appears because F is opposite to r in direction. This is called 
the centripetal force. What does Eq. 4.15 mean? It means that for an object of mass m to be 

2 mv 
in uniform circular motion, a net force - r r must act on the object, Whenever we see an 

object in uniform circular motion, we know that a net force of this magnitude must be 
acting. Some physical mechanism like gravity, tension in a string, an electric or magnetic 
force, friction etc. must provide this force. For example, the giant planet Jupiter circles the 
Sun at a speed of 13 kms-I. The gravitational force-keeps it in its approximately circular 
path. Si~niI:irly. when ;I tiny spo1.1~ cut. ~.ouncls n tip111 curve. lht' ccntripctol force needed to 
keep it in a circular path is provided by the frictional force between-its tyres and the 
roadbed, and also by the banking of the road. Protons circle around an accelerator ring 
because a magnetic force provides the centripetal force. 

Example 2 
A geostationary satellite is held in its orbit by the force of gravitation. What is its height 
above the surface of the earth? 

You may have studied about geostationary satellites in Unit 29 of the Foundation Course ~ 
FST 1. You may know that its time period of rotation is 24 h which is the same as the period , 
of rotation of the Earth about its axis. Now, the centripetal force needed to keep the satellite 
in its path is provided by the force of gravitation between the Earth and the satellite. So, if 

I 

I 

I 



nl, and ni, are the masses of the satellite and the Earth, respectively, and r the radius of the 
satellite's orbit, then 

Angular Motion 

m v2 Gm,rn, 
S_=- 

r r2 
2x 

where v is orbital velocity of the satellite given as v = r ,  
1 

and T = Time period of rotation = 24 h = 24 x 60 x 60 s 

Gw, T? 4 9  Gnlt- Or ,.3 - E So, we get, = _, 
T - 1.- 4n2 

Putting r = R, + h, where R, = the radius of earth and h = height of the satellite above the 
surface of earth, we get 

\ 1 
Substituting the values of G, m, and R,  and putting T =  24 x 60 x 60 IS, we get 

h = 3.59 X 10% = 35900 km. 

SAQ 6 
Suppose the moon wsrr held ira arbr! iaoi tyv gm.:l\l~tation rll'thca Earth but by t t~e  ten!,,on h a  ;I 
lnassless cable. E.c,rinn;itt: the m:ignitudu ol: i31c tclas!oii in ?he ciilslc. 

What is the force for circular motion in which the angular speed of the particle changes? For 
example, the rotary motion of a particle on a record turntable spinning up from rest to full 
speed, or a ball swung in a vertical circle. In this case, we again use Eq. 4.11 for a and 
obtain 

F = m a = F R + F T  (4.17a) 

2 A  mvL A 

where FR = -mrw r = - - r, and 
r 

F., = mra 0. 

Thus, for non-uniform circular motion the force has a finite transverse component in 
.addition to the radial or centripetal component. You have studied in Sec. 1.4 of Unit 1 that 
the centripetal acceleration and, therefore, the centripetal force changes only the direction of 
velocity, and not its magnitude. What effect does the transverse force have on the particIel? 

Role of transverse force 
The transverse force gives the particle a finite angular acceleration: the greater the force, the 
greater is a, and geater'the rate at which angular speed increases. In othcr words, this force 
makes the particle turn faster and faster, if it continues to act. What do you think will happen 
to the rotating object if this force stopped acting? 

If F, is zero and F, continues to act, the particle will continue to rotate in a circle but with 
zero angular acceleration, i.e. at constant angular speed. Thus, to keep a particle moving in a 
circle at a constant angular speed, only a centripeta1 force is needed. Only if you want to 
increase or decrease the rate at which the particle is rotating, you have to apply a transverse 
force in a direction perpendicular to the radius. Suppose you want to start rotating a wheel, 
(potter's wheel or bicycle wheel), or a grindstone or a merry-go-round, which is initially at 
rest (see Fig 4.10). You will have to apply a transverse force because you want to change its 
angular speed from zero to some positive value. You also need a centripetal force to make it 
move in a circle. Hence, you apply a force which is not exactly perpendicular to the radius 
but along the direction of the resultant F of the radial and transverse forces. i.e, tiIted a little 
towards the centre of the object. 

IU l (1)) 
Fig. 4.10: (a)  A lrancverse force along R is needed alongwith the radial force along A to set the merry-go- 
round moving; ( b )  you upply a retarding transverse force 

C- 



Activity 
Try to rotate a merry-go-round, a grindstone or a bicycle wheel yourself. What is the 
direction in which you apply the force? Draw the direction on Fig. 4.10a. 

We have seen that a transverse force is needed to increase the angular speed of a rotating 
object. The same force but in opposite direction would be required to reduce the angular 
speed of the object. This is what happens when you apply brakes while riding a bicycle. The 
surface of the brake B comes in contact with the rim of the wheel which rotates in an 
anticlockwise direction (see Fig. 4.10 b). It produces a transverse frictional force F, in the 
opposite direction, decreasing the angu!sr speed of the wheel. 

Actually, friction is always present between a rotating wheel and the shaft or axle about 
which it rotates. Therefore, left to itself it will stop rotating, sooner or later due to friction. 
This is the same as in straight line motion where a force of friction slows down a moving 
object till it stops. 
Example 3 
A roller coaster has a Loop-the-Loop section of radius r (Fig.4.1 l(a)). What should the 
speed of a train be if it is not to leave the track even at the top of the loop? 

la1 1 1 ) l  

Fig. 4.11: (a) Loop-the-Loop roller coaster is a winding train track in amusement parks. Forces on the train 
include gravity and the normal force of reaction between the train and the track. The resultant of these 
forces provides the centripetal force to keep the train moving on a circular patL;(b) at the top of the loop 
the net force on the passengers points downwards. 

What are the forces acting on the train and the track? These are gravity and the normal force 
of reaction, between the train and track. The train will stay on the track only as long as the 
normal force of reaction between the train and the track remains non-zero. The forces ate 
shown in the Fig. 4.1 l(b) at two points on the loop, The net force at any point is related to 
acceleration by Newton's second law: 

Fg + N = mn. I 

Let us, for convenience, choose a coordinate system with the positive direction downivard. 
At the top of the loop, the vertical component of the force equation becomes 

so that r 

m 
Now, if N is to remain non-zero at the top of the loop, then I 

(v2 - gr) > 0, 
i.e. v2 > gr, 
or v 2 f i .  

Therefore, for the trairi to be in contact with the track even at the top of the loop, its speed 
should always be greater than 6, So for a typical roller coaster for which r = 6m, say, 

f i  = d w i  = 7.7 ms-' . The train's speed, therefore, should always be greater 
than 7.7 ms-' in this case. 

- 

A level road has a turn of95-m radius of curvature. What is the nn:i;tin?urn speed with which 
a car can negotiate this tuin (a) when the road is dry and the ccasfficicrnt of static friction is 
0.88 :end (b) when the road is snow-covered and the coefficient of s~jdtic friction is 0.2i ? 

68 [Hint: The frictional force between tyres and road provides the car" acceleration.] 



43.2 Angular Motion in General Angular Motion 

Let us now determine the force acting on a particle executing accelerated angular motion, 

From Newtoll's second law, using Eq. 4. I4 we have 

where FR is the radial force which acts along ?and has a magnitude 

F~ = m ( ? - r e 2 ) .  (4.18b) 

and FT is a transverse force which acts perpendicular to and has a magnitude 

FT = m[r9  -I- 2~01.  (4.18~) 

Equations 4.18 are very general. They can be used to solve any problem of motion in two 
dimensions, such as planetary motion. These expressions may look a little complicated to 
you. Don't let this put you off. All that we need to understand is this: We can use plane polar 
coordinates to describe any two-dimensional motion.Then, such a motion may be seen as a 
combination of straight line motion along the radius vector and a rotation about the origin of 
the fqme of reference. The straight line motion is accelerated due to a radial force. The 
rotation, which is also an accelerated motion is the result of transverse force. For most 
~ilun~inna Eqs. 4.1 X ;Ire reduced to a simple I'cjrm. 

So far we have applied Newton's second law to study the angular motion of a particle. 
However, if the rotating object were a rigid body, then applying Newton's laws to determine 
the motion of every particle in it would be too cumbersome. Can we, instead, formulate an 
analogous law that deals directly with rotational quantities? For doing this, we need the 
analogues of force, linear momentum and acceleration for angular motion. We have seen 
that the angular acceleration is the rotational analogue of linear acceleration. What is the 
rotational analogue of force? The answer is torque, which we will now study. 

4.3.3 Torque 

Perform the following activity to understand what torque is. 

Activity 
Open a door by applying a force near its edge along the door's plane. Then try to open it by 
pushing it at the same point in a direction perpendicular to or at an angle with the door's 
plane. Next push it at a point near the hinges, with roughly the same force, In which case 
does the door open more quickly? 

You can repeat this activity to open a book or to open a rusty nut with a spanner. \ l Z  
You would have noticed that in all cases, the job was easier if you applied the force at the 
point farthest away from the axis of rotation and also in a direction perpendicular to the 
plane of the door, or the book, or the arm of the spanner. So, how easily an object rotates 
depends not only dn the force but also on the point and on the angle at which the force is 
applied, i.e, it depends on the torque. We define the torque for a single particle observed 
from an inertial frame of reference as follows: 

II 'n force F acts on a particle at a point P which has a position vector r, the torque % acting 
on the particle with reference to the origir~ 0 is defined iis 

Torque is a vector quantity (Fig. 4.12). Its magnitude is given by 
Fig.4.12: A force F is applied 

T = rF sin p, (4.19b) to n particle P, displaced r 
relutivc to the origin. F makes where p is the angle between r and F. 1:s direction is normal to the plane formed by r and F. angle with r, The 

Thus T and F are always perpendicular to each other. The unit of torque is newton-metres. direction of torauc is 
NOW, if we substitute F from Eq. 4.18 (a), we get perpendicular to the plune 

coninini~~g r and P with the 
z=rXF,+rXF,.. (4-1 9c) sense given by right-hand rule. 

Since FR is parallel to r, their cross product will be zero. 

: . 2 = r X F T .  (4.19d) 

It is important to realise that torque and force are entirely different quantities. The concept 
69 of torque provides a relation between the applied force and the tendency of a body to rotate. 



Concepts in Mechanics For one thing, torque depends on the origin but force does not. You produce greater torque 
for the same force, if you apply the force at greater distances from the.pivot point or the 
origin. Again, for a given force and diswilce r ,  the torque is greatest when r and F are at 
right angles (see Fig. 4.13a). 

r 

(-7 
The torque becomes zero when r and F are along the same line (Fig. 4.13b). Thus, even if 
forque is zero, the external force need not be zero. The torque is also zero if the force acts on 
the point or along the axis, about which the particle is rotating. This is because in such a 
case, the vector r will be zero. Torque is obviously zero if the external force itself is zero. 
There can also be a torque on a system with zero net force (Fig. 4.13~).  In general there will 
be both torque and force. 

F 
(a) Let us now find out the torque acting on a particle in circular motion in the xy-plane. Using 

Eq. 4.17 c, and Eq. 4.19 d we get 
r A . 
F 5. 7 = r X rnr(x6 

0 P F 4 
= rnr2ai; x B), , - . A "  since r = rr 

( 1 ) )  = 1111~2tnk,s1ncc r x 0 = I L ,  t'roln SAQ 3( c ). /'-% 
= mrza ,  

f since o;k is simply the angular acceleration vector a. / 
&,) (1.20) 

Let us compare Eq. 4.20 with Newton's second lawe>= ma. The torque is the product of the 
angular acceleration a and a quantity mr2. On comparison we can say that this quantity mr" 
is the rotational analogue of the mass. We call the quantity mr2 the rotational inertia or 
moment of inertia and represent it by the symbol I. Rotational inertia has the units kg m2 
and accounts both for mass of the particle and for the location of the particle relative to the 

f 
( C )  

axis of rotation. You know that the inertial mass is a measure of the body's resistance to 
change in its state of motion. In the same way, rotational inertia is a measure of the body's 

Fig 4.13:(a) The torque is 
greatest with F andr at right 
angles; (b) zero when they are 
collinear; (c) there can be a 
torque on a system with zero 
net force. 

Fig. 4.14 

resistance to change in its rotational motion. Note that I would change if we change the axis 
of rotation. In contrast m is a constant. Substituting I for mr2 in Eq. 4.20, we can wiite for 
circular motion of a particle of mass m about a fixed axis of rotation 

where I = mj2. (4.2 1 b) 

This equation is similar to Newton's second law. We can deduce the same kinds of things 
from it as we did from equation F = nta. For instance, for constant 1, the angular 
acceleration is directly proportional to the applied torque. In the absence of torque, an object 
continues to move at a constant angular speed. And, the same torque will produce greater 
angular acceleration for an object of smaller mcynent of inertia. You can now apply the Eqs. 
4.21a and 4.21b tosolve a problem in which the torque acts to change the particle's angular 
velocity. 

SAQ 8 
You niay have studied in Bloc!< 3 of F:oundatlon Course FST Y that 3 neutron star is an 
extremely densc, rapidly spinning ohject that results from the collapse of a star at the end of 
its l ik.  h neutron star of mass 15 x lo3' kg has a rotational inertia of 45 x 10'"g m2 about 
an axis of rotation passing through its centre. Tie neutron ritar's rotation rate slowly 
decreases as a result of torque associated with niagnetlc fo~.ces. If the rate of change in its 
angular speed is 5 >< rad s-', what is the rnagtlitude of magnetic torque? 

Another question concerning angular motion is whether we can express the kinetic energy of 
a rotating particle in terms of the angular variables? Yes, we can. Let us see how totdo it. 

4.3.4 Kinetic Energy of Rotation 
Let us consider a particle of mass m moving in a circle of radius r about a fixed-axis of 
rotation AOB (see Fig. 4.14). Let its angular speed about the axis be o. Its kinetic energy is 

1 1 
K. E. = - mv2 = - m(rco)', 

2 2 
=,a ; , r 2 d  

Thus, using Eq. 4.21b, we get 



This is a s o  termed as the kinetic energy'of rotation oflhe body< 

So far, we have studied some concepts of angular motion. We have seen that an analogy 
exists between the kinematics and dynamics of linear and angular motion. This analogy 
would be complete if we could define a physical quantity corresponding to linear 
momentum. Indeed, there is such a quantity called angular momentum. We will discuss 
angular momentum especially so as to arrive at another very important conservation law. 

4.4 ANGULAR MOMENTUM 7 
d~ We know that the torque on a particle due to a force F is given as2 = r X F.Since F = - 

from Newton's second law, we get dr 

dp = 0 + r x - (-: v x niv = 0 ) .  
dr 

Angular Motion 

So, we can write, 

We define the angular momentum L of the particle with respect to the origin 0 to be 

L = r x p  (4.23a) 

Thus, angular momentum is a vector with magnitude 

L =rp sin y ,  (4.23b) 

where y is the angle between r and p. The direction of I, is perpendicular to the plane 
formed by r and p. It is determined by the right-hand rule (see Fig. 4.15). Although L has 
been drawn through the origin, this location has no special signifitance. Only the direction 
and n~agnitucle of 1, are in1port:nt. The uni t  of a~igular niolncnturn is kg m' s '. l'ht~s. tlle 
expression for lorclue becornes 

You can see that this relation is analogous to Newton's second law. w e  can also relate 
angular momentum to angular velocity. Let a particle of mass m move anticlockwise in the 
xy-plane about a fixed axis of rotation perpendicular to the plane with a linear momentum p, 
Then you know that its angular momentum is 

L = r X ~ = r X u r v = m r X v .  

Using Eq. 4.6 for r and Eq. 4.13 for v we get 
. h 

L  = mr x (i.; +/-00k 
= 0 + mr20(i! x O),, since x r" = 0 .  (4.25a) 

:. L = mr2 ifk 
Now nlr' is the moment of inertia I  of the particle i~nd f$ is the iingulii~. velocity vector a. ( n )  

Therefore, we can write 

L = l w .  (4.25b) 

Nbtice that this equation is analogous to p = mv, 

Let us now work out an example on angular momentum. 

Example 4: Angular momentum of a particle in uniform motion 

A block of mass m and negligible dimensions moves at a constant spced 1- in n straiglit line 
(see Fig. 4.16). What is its angular momentum LA about the origin A and its angular 
momentum L, about the origin B? 

Let the particle move along the x-axis, i.e.,v,= v T . As shown in Fig. 4,16(a), the position (h) 

vector of the particle with respect to A is Fig. 4.16 71 



h 

rA = xi  

Since r, is parallel to v, their cross product is zero and 

The particle's angular momentum with respect to B is 

We can write 
A C 

r, = xi - hj 

where x is the component of r, parallel to v and h its component perpendicular to v. 
A 

Since i x v = 0, only I;~col\t~.ibu~c\ to I,/ , .  TIlu\. 

h 

I,, = 111hr-k. 

Thus, L, lies in the positive :-direction and has a magnitude mhv. This example shows how 
L depends on the choice of the origin. Further, for the particle moving in a straight line, 12 is 
constant. Therefore, the angular momentum of a particle moving at a constant speed in a 
straight line remains constant. 

So, the torque acting on such a particle is zero. 

Another idea brought out by the above example is this: Do not think that the quantities w, L, 
a and z can be defined, or have meaning only for angular motion. Any moving object can 
possess an angular velocity, angular acceleration, angular momentum and torque about an 
origin. What is more, the same object can have different values for these quantities about 
different origins. 

SAQ 9 
A particle of mass m falls from rest in the earth's gravitational field acco~dirlg to Galilee's 

law z = g - R?. Its horizontal coordinates are .u = xu, .v = 0. 

a) Determine the position vector r and velocity v of the particle at time f. 

b) Find the angular momentum L as a function of time about the origin. 
dE 

c) Determine the torque acting on [he particle about the origin, (Hint: T = - ) 
dl 

4.4.1 Conservation of Angular Momentum and its Applications 

What happens when the net external torque on the particle is zero? Eq. 4.24 becomes 

i.e. L = constant. 

Thus, we get the principle of conservation of angular momentum. The angular momelztum of 
a particle remains cortstant both in magnitude and direction if no net extet.nal torque acts on 
it. 

Constant angular momentum implies that the particle's motion is confined to a fixed plane 
normal to L. This is because by definition L = r x p and L is normal to the plane containing 
r and p. Since L is constant in direction, r and v will lie in a fixed plane normal to the 
constant vector L. So we need to use only a two-dimensional coordinate system to study the 
particle's motion. The principle of conservation of angular momentum applies to systems 
ranging from subatomic particles to huge rotating galaxies. Let us study some applications 
of the law of conservation of angular momentum to understand it better. 

Pointing a Satellite 
Angular momentum conservation is used to steer a satellite, i.e. to point it in any desired 
direction. For this purpose wheels are fixed inside the satellite, Each wheel has a motor and 
brakes to start and stop its rotation. When a wheel starts rotating, the satellite rotates in the 
opposite direction to conserve the angular momentum. After the sateIlite has rotated through 



the desired angle, the wheel is stopped and the satellite also stops rotating. Three wheels are 
normally used so that the satellite can be pointed in any direction. The motors and brakes 
runon electricity generated through solar energy, so there is no fuel to run out. 

It is also because of the conservation of angular momentum that a satellite's axis of rotation 
remains fixed in space. Satellites are usually rotationally isolated bodies. So the net torque 
actingon them is zero. Thus, the direction of L and hence the direction of the axis of 
rotation remains fixed. Therefore, spinning the satellite gives it a stability in orbit 
(Fig. 4.17). 

Fig.4.17: (a) For a rotationally isolated salellite, L remains constant in magnitude and its direction remains 
fixed in space. Thus, the axis of rolation remains fixed as i t  is along L; (b) the fact that the axis of rotation 
remains flxed in space for constant L is used for stabilisation of tl satellite by spinning it. AB sl~ows a section 
of the earth's surface. 

Angular Motion 

Angular acceleration accompanying contraction of a string 
I 
I 

An object of mass m is attached to a string and is rotated in a horizontal plane (the plane of 
I /  the dashed line in Fig. 4.18). t ! ,' 111 

4 :,I 
The object rotates with velocity v, when tine radius of the circle is G. It is seen that as the 

T i  1 

string is shortened by:pulling it in, the object speeds up even as it rotates. Why does the 
object speed up? 5 i 

1 ,r 

The force on the object due to the string is radial. Here we are neglecting the force of 
gravity. Thus, the net external torque on the object is zero and its angular momentum is 
conserved. Therefore, as the string is shortened, the angular momentum should reinain 
constant. The magnitude of the initial'angular momentum of the object when the radius of 
the circle is is Imr, x vol = mGvo sin 90' = mr,,vo. 
The magnitude of the object's angular rnomentilm when the radius of the circle is shortened 
to I' is ln~r x v I = n?r.tr sin 90' = nirlJ. 

Since angular momentum is constant, wir.,, I;, = mrv. 

This gives 
- l 'o l i~  

1. 

As r is smaller than r ; ,  11 will be greater than I;,, that is the object will speed up. 

Let us now su~nrnarise the unit. 

Iiip,. 4.18: Mass 111 descril)rs 
circular motion of rattills I;, 
and velocity v,,,lt is connected 
to a string S which passes 
Illrough n tube 7'. 'The rndius 
ol'tlie circle crtn be shortened 
by pulling on the string ul tJ. 

4.5 SUMMARY 

Infinitesimal angular displacements are vectors. The angular velocity and angular 
acceleration vectors are defined as 

The directions of angular displacement and angular velocily vectors are taken along the 
axis of rotation, and their sense is determined by the right-hand rule. 

@ Plane polar coordinates can be used to describe angular motion in two dimensions and 
to express the relationship between kinematical variables of linear and angular motion. 73 

L 



Concepts in Mechanics @ For u~l(fofnrm c.ii'c.ula/.mntio~l, i' and are colistant. 

For circular motion I. is constant, o var'ies ,qivi/~g afir l i te a and 
7 

@ For , ~ L J I I P I . ~ ~ /  mn~~iui .  niotio17. I .  is (I ~~rr~.iuhIe 

The \lector forms oi these relationships are 
v = m % r .  a,,, =OXV. a/ .  = a % r  

Torque and rnoment or tnertia are the analogues of force and inertial mas9 for anpular~ 
motion. The lorque acting on a particle displaced by r. i~rider the i n f  uence of for,cc F 
around the origin is given by 

2 = r X F .  

* Thcre exists a relationship analogous to Newton's second Inw belween Losque and 
angular momentum: 

IIL 
= -. where L = r x p. 

dt 
@ For a pal.licle of inass ni moving in a circle of radius 1.around a fixecl axis of' rotation 

2 = I a. whcre I = 1121.~ is its moment or iner~in. 

The kinetic energy of a particle of Inass nl rotating with an angular speed w is 
1 

K , , ,  = - lo' 
2 

It' the net external torque acling on :I system is zero, the i~ngular momcntllm oi'tlle 
system is constant both in magnitude und direction. This is thc principle of'oonservation 
of angular rnornentuln arid i t  has miuiy applications. 

4.6 TERMINAL QUESTIONS 

1. Take a rectangular coordinate system. A particle moves parallel to x-axis with a 
constant speed v.  Show that the magnitude of its angular velocity varies inversely as the 
square of its distance from the origin. Also obthin an expression for the magnitude of its 
angular acceleration. 

2 A particle ot mass 59 moves in a plane with conbtant radial spcecl i. = 4 m .;-I. The 
angular veIocity is constant and has magnitude 0 = 2 rad s-I. When the particle is 3 m 
from the origin, find the (a) velocity, (b) acceleration and (c) kinetic energy of the 
particle. 

2" 
A 

3. A panicle of mass rn moves along a space curve defined by r = 614t- 3 j + (41' A 5)k. I 

Find its (a) angular momentum, (b) torque and (c) kinetic energy of rotation about the 
origin. 

4. Two objects of mass 20g and 30g are connected by a light rod of length I m and move in 
a horizontal circle as shown in Fig, 4.19. The speed.of each is 2 m s-I. (a) What is the 
total angular momentum of the objects about the centre? (b) If the rod contracts 
uniformly to half of its original length, will the speed of the objects change? If so, by 

Fig.4.19 how much? 

4.7 ANSWERS 

SAQs 
1. The magnitude of the rotation will be 2x/3 rad. Its direction w11l be perpendicular to the 

face of the clock pointing away from you if you are holding i t  face up. 

(a2) d 2. Since o is constant, dO = 0, or d- = = 0. 
d t  dt dt 



d d A 48 Since -(A.B)=-. B+A .- 
dt dt dt ' 

d duo duo dm -(@.a)=--.w+o.--= 2--.o;(.:A.B=B.A) 
dt dt dt dt 

This implies that a is perpendicular to 03. 
A A 

3, a) i) ~ ~ ~ = ~ = ~ ( c o s e i + s i n ~ - ( c o s 8 i + s i n $ )  

= 4cos2 e + sin2 o = 1 

ii) I f l = m = d z $ j - ( - s i n ~ ? + c o s ~ f ) =  jsiniZZEi%=l 
A A A A A 

iii) f - 0 = (cos 0 i + sin 8j) . (- sin 0i + cos 8j) = - cos 0 sin 0 + sin 0 cos 0 = 0 

A h 

From a.i) and ii) i -'3 = 1 and 0 - 8 = 1 

Therefore, A - B = A,Br + AeBe 
A A A A A A 

C) r x0 = (COS ei + sin0j) x (-sin 8i + cos 0j) 

4. We shall use the equations for constant angular acceleration given in Table 4.1 along 
with Eqs. 4.6 to 4.11. Hence I. = 0,5m, a = 3.0 rad s-~. 

a) The magnitude of the angular displacement is given by 
1 2 1 2  0 = coot + - a t  = a t  , '.' coo = 0 in this case 
2 

The direction of,0 will point along the axis of rotation from 0 to A (Fig. 4.7). The 
angular speed 

or o = 6 rad s-' 

and the direction of angular velocity is along OA, 

b) The linear velocity v is given by . A A 

v = f; + +0 = rwfj ,since I. is constant, 
A 

or v = 0.5m x 6 rad s-' e since w = 6 rad s-I at t = 2s. 
So the linear velocity of the particle has a magnitude 3m s-' and is directed along the 
tangent at that point, 

Radial acceleration aR = -a2$ = -(6 rad x 0.5 nf: 
A 

5-18 ms"r. 
A 

Transverse acceleration aT = ar0 
A A 

= (3.0 rad s 2 )  x (0,5rn)8 = 1.5 rn s-% 

You must note that radian is the unit of angle which is dimensionless and hence its 
multiplication witti any other unit leaves it unchanged. 

5 The trajecto~y of the particle is given by 

a) The velocity v = i f  + &e from Eq. 4.13 a. 

Angular Motion 

dr at . d0 Since i = - = - rn S-' and 8 = -- = C# rad S-' 
dt  n & 
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Acceleration a = ( f  - d 2 ) 3  + (4 + 2i.e)o 

di. (7, -, .. 
Since i: = - = -ms 0 = a rad s-' 

dt 76 

b) a, = 0 means that 

a a3 , --- t = 0, or a3r4 = 2a. 
n 271 

Since a + 0, we get cx2t4 = 2 OT 

1 
i.e. e2 = i r a d 2  giving 8 = -rad. 

.Iz 
6. The tension in the massless cable holding the moon will provide the centripetal force 

mv -. Now, if the moon were held by the force of gravitation between the earth and the 
I' 

moon then, 

where m and m, are the masses of the moon and the earth, respectively, and r is the mean 
distance between the moon and the earth. 

mv2 GmmE -- So, the tension Tin the cable = - - 
r .2 

or T =  
(6.673 x 1 0 - " ~ m " k ~ - ~ )  ; (7.35 ;( loz2 kg) x (5.97 x 10" kg) 

(3.85 x 

Fig. 4.20: N is the normal = 1.92 x 10U)N. 
reaction which balances the 
~veigllt F,? (=t irg l ,  Fs, the force Compare this with the tensions in cables required to lift cars or trucks which are of the 
of friction, provides the order of 20,000 N. 

centr'petal force. , 7. The centripetal force is provided by the force of fiction between the car's tyres and the 
road (Fig. 4.20). 

The magnitude of the force of friction Fs = psN = &pg, where m = the mass of the car. 
2 mv 

So ~ l ,  ,mg = -, where v = the maximum possible speed of the car. 
r 

:.v =fie 
a) For the dry road. v = J(0.88)(95 m)(9 .8 rn~-~)  = 2 

r . X ~ t - - - - - ,  x 
b) For the snow covered road v = d(0.21) (95 rn) (9. 8 m i 2  ) = 14 ms-' , 

If this speed is exceeded, the car must move in a path of greater radius which means 
it will go off the road. 

8. The torque of an object is related to its angular acceleration by T = Ia. Here 

I = 4 5 ~ 1 0 ~ ~ k g  m2andu=5x 10-5rads-2 . 
Therefore, the magnitude of the magnetic torque = (45 x kg m2) X ( 5 ~ 1 0 ~ '  rad s-') 
= 2.2 x lV3 newton-metres. 

9. a) Refer to  Fig, 4.21. The position vector r of the particle with respect to origin at time 
t is A 

r = xoi + o i +  (io - f 8r2)1;. 
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Its velocity. at time t is 

b) The angular momentum 

C) The torque acting on the particle about the origin is 

0 X 
Terminal Questions 
1. Refer to Fig. 4.22. Let the particle be at P at the time t. Its distance from the y-axis is 1; I ' 

then equal to I,/. So 0 =tan - ' (kt rt). The magnitude of its angular velocity is given by Fig. 4.22 
I [  I 

a constant 1 

. So, a is inversely proportional to OP2. or,w = 
0p2 ii f 

. / 
The magnitude of angular acceleration is given by 

2, a) The linear velocity of the particle is 
. fi 

v = $+roe.  

Here i = 4 m s- ' ,  = 2 rad f' and r = 3m. So, 

v = ( 4  ms" )^ r+ (3  mx2rad< ' ) ;  
A 

= (4 r+60)m S"=\mR + v T  

The magnitude of the velocity u = Jv: + v: 

2 @+? m s-'= 2JT7 s-1 

Its direction is given from Fig. 4.23 by 

"T - 6 - tan 4, = - - - = 1.5 where 
v~ 4 

4, is the angle which v makes with r. . A 

b) From Eq. 4.14 acceleration a = (i: - re2);+ (r.8 + 23.0)0 

Since 3. and 0 are constant; i: = 0, 0 = 0. 

SO a = (-re2 )C + 2ieG 
2 -2 A 2 -1 

=(-3rnx4rad s ) r + ( 2 x 4 m s - ' x 2 r a d  s )O 
-2 = -12ms r + 16m f26. 

Its magnitude a = d(12 x 12) + (16 x 16) m;s2 = 20 rn <' and its direction is 

P 
Fig. 4-23 

given by tan $2 = = -1.3, where $2 is the angle which a mn keh with ; 1 
r l 

3 (see Fig. 4.23). 

1 2  c) The kinetic energy of the particle is K,,, = -I o 
2 
1 2.2 =- mr 9 
2 

! * 
t 

4 
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.(3rn) ( 2  rad s ) 

= 0.1 joule 
4'- 2..- A 

3. Since r = 6t i - 31 j + (4t3 - 5)k 
dr 3 2 -  

v=-=24t ' i -6t j+12r  k 
dt 

Angular momentum L = r x p = mr x v 

dL 3 5 4 * 
b) Torque T = - = m[-(48t + 30)1+ (1441 - 360t2)3 + 1801 k] 

dr 
1 

c) Kinetic energy of rotation = - mv v 
2 
1 

= -m[576t6 + 36t2 + 144r4] 
2 

= 18rnt2[16t4 + 4t2 4- 11. 

4. a) Refer to Fig. 4.24. The total angular momentum of the system 
= (0 0 2  kg) (2m s - ' )  (0.5 in) + (0.03 k g )  (7-111 \ ' )  (0.5n1) 
= 0.05 kg m2 s-'. 

b) Since no external torque acts on the system, the angular momentum remains 
conserved. As the rod is light, we shall assume it to be massless. As the particles 
remain connected by the rod the magnitudes of their velocities must be same 
(=v,say). When the rod gets contracted to half its original length the radius of the 
circular path (shown dotted) becomes 0.25 m (Fig. 4.24). So, the total angular 
momentum 

= (0.02 kg) (11 )(0.2Srn)+ (0.03 kg) (\9(0.25m) 
= 0.05 x 0.25 )I kg m 

Fig. 4.24 From the principle of conservation of angular momentum, we get 
0.05 kg m2 s-' = 0.05 x 0.25 v kg m. 
or v = 4m s-', So, speed of each particle becomes 4m \'.' i.e. double the original 
value. 
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5.1 INTRODUCTION 

In the previous four units you have studied linear as well as angular motion of a variety of 
objects. However, by and large we restricted our study to motion of objects on the earth. We 
did discuss some examples of motion of heavenly bodies but they lacked in details for want 
of the knowledge of gravitation. Therefore, we shall study gravitation in this unit. 

We shall start from the familiar Kepler's laws of planetary motion to arrive at the law of 
universal gravitation. We shall then develop the concept of gravitational field and potential 
and use them to revisit the ideas of earth's gravity, and escape velocity. Finally, we shall 
visualise the gravitational force as a fundamental force in nature. Alongwith that we shall 
discuss, in brief, the electroweak and strong forces which are the other basic forces in 
nature. 

In Block 2, we shall apply the concepts of mechanics developed in this block to motion 
under central conservative forces, systems of many particles and rigid bodies. We shall also 
study motion in accelerating frames of reference. 

Objectives 
After studying this unit you should be able to: 

apply the law of gravitation 
e infer that the law of gravitation is universally true 

compute gravitational intensity and potential 
solve problems related to the variation of acceleration due to gravity with the height, 
depth and latitude of a place 
derive expression for velocity of escape 
distinguish between the fundamental forces in nature. 

dJ.+.%,~~, 

5.2 LAW OF GRAVITATION i T?.. 1 - Q )  

jT7 .;2 ,.i . $>-J\ . 
L, gLj~> :.. .;. ,,.,a d;? 

You must be aware that the 'Law of Gravitation' was formulated by Sir Isaac Newton. The 
popular story goes like this: 

Newton was sitting under a tree from which an apple fell and struck him on his head. 
This gave him the necessary impetus to discover the law. There could have been another 
part in the story: Newton was staring at the moon when the apple hit him (Fig. 5.1)! 
Newton's stroke of genius was that he realised that the force which causes apples to fall 
to the ground is of the same kind as the force which causes the moon to orbit the earth. In 
fact, the law of gravitation did not strike Newton in his first effort. He was looking for the 
answers to many questions related to wide-ranging topics from the 'Law of Falling 
Bodies' due to Galileo to Kepler's 'Laws of Planetary Motion'. Let us first arrive at the 
law of gravitation using Kepler's~laws (Fig. 5.2). We shall then examine its universality 

Fig. 5.1: Newton reelised that all 
objects in the universe whether on 
earth or in heavens move under 
the influence of the same force oP 
gravity. 


