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4.1 INTRODUCTION

In Units | to 3 you have studied some important concepts in mechanics, such as
displacement, velocity. acceleration, force. linear momentum, work and energy. You have
also studied two important conservation principles. Conservation of linear momentum and
Consetvation of energy. However, our development of the concepts of mechanics sofar has
been restricted in one important respect. We have not devel oped techniques to describe and
analyse the angular motion of particles, in particular their rotational motion,

You may say that we have studied the problems of uniform circular motion and projectile
motion using these concepts. But the world is full of objects that undergo rotational mation:
From rotating galaxies to orbiting planets, from merry-go-rounds, bicycle wheels and
flywheelsto rotating ballerinas (dancers) and acrobats. In principle, we can analysedl such
motions using Newton's laws by applying them to each particle of the object undergoing
angular motion. But in practice it isadifficult task. especially for extended bodies, because
the partictes number in thousands. What we need is asimple method for treating the angular
mation of an object asa whole.

In most cases. we can study the angular motion of an object in terms of the angular motion
of a point on it. Therefore, in this unit we shall study the angular motion of a particle and
develop related concepts, such as angular displacement, angular velocity, angular
acceleration. torqueand angular momentum. Using these concepts, we shall study angular
motion o rigid bodies in Unit 9. In the next unit, we will turn our attention to gravitation
and other forcesin nature,

Objectives
After studying this unit you should be able to:

e compute angular displacement, angular velocity and angular acceleration of a particle
undergoing angular motion

e express displacement, radial and transverse velocities, and radial and transverse
acceleration using plane polar coordinates

e relatethe kinematical variables of angular motion and linear motion in their vector forms

& solve problems related to the concepts of torque, rotational kinetic energy and angular
momentum of a particle

e apply the law of conservation of angular momentum.

4.2 KINEMATICS OF ANGULAR MOTION

L et us begin our study of angular motion by considering a particle moving inacircle about a
fixed axis passing through the centre and perpendicular to the plane of thecircle. (Fig.4.1a).
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Angular Motion
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Pig.4.1:(a) A particle P rotating anticlockwise in a circle about a fixed axis, known asthe axis of rotation;
{h) theangular position 8 of the particleat an instant ; {¢) the particle  undergoes an angular
displacement AB (= 8,~0 ) intimeA«(=1,—1).

As you know from Sec. 1.4, we need only a two-dimensional frame of reference to describe
thismotion (Fig. 4.1b). The angle 0 istheangular position o the particle at P with respect to
thereference axis, namely thex-axis. By convention, we take 8 to be positive for
anticlockwise rotation and negativefor clockwiserotation. It is given, in radians, by the
relation

S
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where s isthearc length shown in Fig, 4.1 b and » the magnitude of the position vector 1 of
the particle. If the particle rotates more than once, then 8 will take theincreased value'
accordingly. For example, let the particle be at P et theinstant ¢ after completing two
rotations around the circlestarting from A. Then itsangular position at theinstant t will be
given by theangle (2 x 2 + 0) = (4% + 0). Now, let the particle rotateanticlockwise. Let its
angular positionsat timet, and & alater timet, be9, and 6,, respectively (seeFig. 4.1 c).
The angular displacement of the particle will be 0, — 6, = A8 during the time interval

t, - t,= At. Notice that we have used the term "angular displacement'. Isthisa vector
quantity like linear displacement? Let usfind out and discussangular displacementin
somewhat greater detail.

4.2.1 Angular Displacement

If wesay that angular displacement isa vector, then, firstly, alongwith a magnitudeit should
have a direction. Secondly, angular displacements should add like vectors. Asyou can see,
the magnitude of the angular displacement is theangle through which the particle turns.
What is thedirection of angular displacemegt?

In asensetheideaof adirection is associated with angular mation. We have both clockwise
and anticlockwise rotations. Let us represent an anticlockwise rotation of say, 8 rad by an
arrow of acertain length pointing in acertain direction. Then arotationof —0 rad will be an
arrow of thesamelength, but pointing in the oppositedirection. But in what direction should
thefirst arrow point?

It obvioudly cannot bethe direction of the particle's position vector at itsfina angular
position. Why?See Fig. 4.1 bagain. For an anticlockwise rotationthrough an angle®, the
direction of angular displacement would be OP. But for a clockwise rotation through the
same angle, itsdirection will be 0Q. So, two equal and opposite rotations (clockwise and
anticlockwise) of any magnitude will not in general be antiparatlel. Thus, with this choice of
directions, angular displacements will not be vectors.

Then how can we define thedirection of angular displacement? You must have handled a
screw-gauge &t echool. Therethe rotational motion of the screw istranslated into the
forward motion of thescrew-head which takes placealong astraight line. Thisstraight line
can define thedirection of the rotational motion of the screw. Thisstraight lineisessentially
theaxis of rotation of the screw.

So we can define the direction of angular displacement to bealong theaxis d rotation, But
how do we represent a clockwise or an anticlockwise rotation along the axis of rotation?

You arc perhaps more familiar
with theunit of degressfor
measuringangles. The unit of
radian; isreated to degreey by
the following formiTa

360° =2 & rad; 4

n=23.1415927 ...

59




ConceptsinMechanics Wefollow the right-hand rule to make the choice. Wecurl the fingers of our right-hand
around the axis, in thedirection of rotation of the particle. The extended thumb points

along thedirection of the angular displacement (seeFig. 1.9b). Thus, for the particleof
Fig. 4.1 (a), thedirection of 8 will be along the positivez-axis. In Fig. 4.1 (b), thedirection
of @ will be perpendicular to the page and the point up out of the page.

SAQ 1
What would be the magnitude and direction of. the angular displacement in aclockwise
rotation of @hand of actock from 5 D7

Having specified thedirection of theangleturned by arotating particle, et us see whether it
satisfies thelaws of vector addition. Let usconsider thecommutative law of vector addition:
A+ B =B+ A. What happensin thetwo-dimensional case when the particle remainsin the
same plane.whilerotating about a fixed axis? Y ou can find theanswer with the hep of a
clock as shownin Fig. 4.2. In Fig. 4.2a starting from {2, the clockhand is given aclockwise
rotation 8, = 2r /3 rad and then an anticlockwiserotation 8, = /2 rad to get the resultant
8,18, InFig. 4.2b the order o rotation isreversed : startingfrom 12, theclockhandisfirst
rotated anticlockwiseby /2 rad and then clockwise by 2n/3 rad, giving @, +8,. The
resultant is the same. Now perform asimilar exercise with different magnitudes of 8, and @,.

What do you conclude?Clearly, if the particle remainsin the same plane and rotates about a
fixed axis, the angular displacement is a vector quantity. Does this law hold for rotationsin
three dimensions? Study Fig. 4.3 and perform the rotations with the help of a book for an

answer.
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6, =60+0f E 9,= U}j+0xi

0, = 8]+ 64 8, =61+ 0f
(b) {¢) (d)
Fig. 43 Rotation through finite angles: (a) The book is rotated by an angle of 7/2 rad anticlockwise around

the v-axis (6 \'f ) and then by 12 anticlockwise around the y-axis (§_7§). The resultant is 0, =9 \_'i\ + 9‘.3 H

(a)

(b} the rotations are the same but in reverse order. i.e. g, = B“j + @41 . Clearly, 6, # 8,. Rotation through
infinitesimal angles: {¢) the book is rotated by a small angle, sa.y /36 rad anticlockwise around x and y=axes;
(d) the rotations are the same but in reverse order. I n this case 8, = Q In all these figures, the origin of the

60 coordinate axes remains at the centre of the book, and the axes remain paratlet to themselves.



What is the answer?Finite angular displacementsin threedimensionsare not vector
quantities, but three-dimensional infinitesimal angular displacements are vectors.

Having defined the angular displacement and studied its vector nature, you are ready to learn
about angular velocity and angular accel eration.

4.2.2 Angular Velocity and Angular Acceleration

The average angular speed of a particle undergoing angular displacement A8 in time Atis

A8

o=
At

(4.2a)
If AB isinfinitesimal, then't will beavector. It will be in the same direction as A8 and wc
will call it average angular velocity. When the angular speed changes with time, we define
instantaneousangular velocity as

o = lim 40 _do

A A dl (4.2b)

48 isavector asit isan infinitesimal angular displacement, We can write 6 = % dt.

Sinced: isascaar, ‘é—? will heavector, i.e. the instantaneousangular velocity wis a
vector quantity. Itsdirection lies along theaxis of rotation and its senseis given by the right-

hand rule. Study Fig. 4.4 to understand the vector nature of « better.

If the angular speed of the particlein Fig. 4.1 cis riot constant, then it has an angular
acceleration. If &, and w, are the instantaneous angular velocitiesd the particle a timest,
and ¢,, respectively, then the averageangular acceleration o o the particlePis defined as

=020 _ Ao 43
o= L—t, A (.34
Theinstantaneous angular acceleration is
. Aw _ do
a= lim = =~
a0 A d (4.30)

What is thedirection of the angular acceleration?Study Fig. 4.5. If the angular vel ocity
changes only in magnitude hut not in direction, then ® simply increases or decreascs,

O 4 TAw o

(

(h) (c)

Fig. 4.5 () An increasein angular speed alone leadstoa change Ae(= w, — @) in the angular velocity that
isparallel toa,.Soaisalsoparallel to . Herea,and o, are theinitial nnd final angular velocities,
respectively; (b) a decreasein angular speed meansthat Awand hence@areantiparallel to o, (C) when
angular velocity changesonly in direction, thechange Am and hence ais perpendlenlar toangular velocity.

Therefore awhich hasadirection along A lies parallel or antiparallel to the axis of rotation
(seeFigs. 4.5aand b). When @ changesonly in direction, the angular acceleration vector is
perpendicular to @ (see Fig. 4.5 ¢). Work out thefollowing SAQ to prove this yourself.

SAQ 2

Show that ais perpendicular to @, if w isa constant. [Hint: For ato be perpendicular to

@, a- =0 Since wis aconstant, Equ (oﬁ):.g.t. (0.0)=0]

In most general cases, both the direction and magnitudeof theangular velocity may change,
in which case ais neither parallel nor perpendicular to @.

Anguiar Moation

,T\m

Pig. 4.4: Thedirection o the
angular velocity isgiven by the
right-hand rule.
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Conceptsin Mechanics

Y ou must have observed by now that the rotation of aparticleabout afixed axishasa
correspondence with the translation of a particleaong afixed direction. The kinematical
variables0, wand afor angular motion are analogousto x, v and a for linear motion: &
corresponds tox, @ tov and ato a You are aready familiar with the relations between
kinematical variablesx, v, a and t for linear motion with constant acceleration. In thesame
manner We can derive the four equationslinking O, ®, @and f for constant angular
acceleration. We are stating these relationsin Table 4.1 without giving their proof.

Table 4.1: Angular and linear position, speed and acceleration

e

Linear Quantity Angular Quantity

or Equation or Equation

Positionx Angular position 8
Speed p.—.% Angular speedm=%?.

; dv _ dx ; _ do _ d%
Acceleration g = T Angular acceleration ¢ = ¥ by
Equationsfor Constant Accclcration
7=l 4 D o=+ o
r=v, tar =+ 0y

=gt laf B=w/+' ur

o’ =} + 208

(@
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Noticethat you get thesecond set of equations merely by substituting © for x, @ for v, afor
« and theinitial angular velocity @, for v, theinitial linear velocity. We have seen that a
correspondence exists between linear and angular kinematical variables. Can we establish a
rel ationship between the two sets of variablesfor angular motion?The answer isyes. We
will find that these relations areeasier to deriveif we use plane polar coordinates.

4.2.3 Relating Linear and Angular Kinematical Variables

In your school mathematics courses, you may have studied plane polar coordinatesr and 8
of the point P {x, y). shown in Fig. 4.6a. Thesearerelated tox and y by the equations:

(4.4a)
giving r {4.4b)
You also know that

AL A
r=x tyj. (4.5)
y v A
] i,
i
i
T~ N P,
RS (‘r ,‘) r .
Px.yi TR £ o 1
i“1
r W ¥ .
i 2 \\\\\ ) {0 l Py :
\ 240
0 VSN °1
-~y X O b (@) c X

Ptig.*. : (a) Plane-polar coordinates r and €; () unit vectors Fand 8 in the planepdlar coor dinate system,
(¢} unit vectors Fand 8 havedifferent directionsat points 7, md p,, i.e. they vary with the position of the
particle.

We now introduce two new unit vectorst and 8, perpendicular toeach other which point in
thedirection of increasing r and in the sense of increasing angle 8, respectively (seeFig.
f.éb). There isan important difference between the two sets of unit vectors(i, f) and (? . 5):

i and T have fixed directions but the directions of £ and & vary with the position of the
particle asyou can seein Fig. 4.6c. Since ¥ isa unit vector along r, wecan write

r=rr @.6




Angular Motion

We can use Eqs.4.4, 4.5 and 4.6 to find the relationshipbetween 7, §and 1, 'j From Egs.
4.4,4.5 and 4.6, we get

r =,£.=%(I‘ cosO1+r SN 93\%
or T=cos6itsn8j. (4.72)

S0 a unit vector in the direction making an angle 0 with the positivex-axis is
cos®1 +sin e/j Bis a unit vector maki ng an angle (1t/2 + 8) with positive x-axis
(seeFig. 4.6b). S0 in order to obtain § we replace  in the expression Of T by (/2 + 8).

So. 6 =C()s(€)+n/2)’i\+sin( B+m/2)j.
or 8 =-snoi+cosg? C%i)

Notice that although * and 8 vary with position, they depend only on 8, and not on ».
Before proceeding further, we suggest that you try the following SAQ to become used to the

. he
polar coordinates: In the text, whenever we use

the terms *velocity’ and
‘acceleration’, we mean ‘linear
SAQ3 veloeity® and “linear

a) Show that the resultsiﬁ ‘_1 ‘Gl—l and ¢ @ (0 are consistent with Eas. 4.7. aceeleration’,

b) If A=Ar *”/\99 and B=B, r+89® then prove that A - B = A B, +A, B,; where r's

and 8's of A and R refer to the same point in the space.
¢)  Showthat r x@=k.
Now that you are familiar with the plane polar coordinates let usfirst derive the expressions

of velocity and acceleration for circular motion in termsof thesecoordinates. In Sec. 1.4,
you have studied these relationsfor uniform circular motion. You know that for constant

o’

®, V= wrand a, = ‘l— = (02,.. Let us now consider circular motion with variable angular
Speed.
Velocity and acceleration for circular motion in polar coordinates
Recall that v = dr . Now. we have from Eq. 4.6.
ot
qr)_dov _d i IF_, dr I
d(r drr dr » € dr _dr 3 . Y ¢/ A
= I S e =0+ Since 1 is a constant, — =)
v dt di dt r r SUdr T (/f ( dt

A
Noticethat ;—ji% isnon-zero, Let us now evaluate it.
Differentiating Eq. 4.7a with respect to timewe get
Zf = 5t (cosO)I + (smO) I, smcel and Jareconstant unit vectors,

- . odB?% 9"
=—s1n9 |+cose -

=9 (—~snex+cosej)

wherewe have written 459 as §.UsingEq. 4.7b, we get

ir— - 66 | | @8)
Thus, for ci rcular motion

V=7 é}S

orvV=roa, 4.9)

[

since @ = ‘;—? .Thus, the velocity of a particlemovingin acircle hasthe magnitudew r. Itis

directed along 8, which isalong the tangent to thecircle. You can seethat Eq. 4.9 holds for
uniform circular motion also.

Againdifferentiating Eq. 4.9 with respect to time, we get the acceleration for circular motion
in plane polar coordi nate«::

dv déa )
= =2 +r@ —
dr dt ;08 dt A : |
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Conogptsin Mechanics

Fig. 47: A grindgtonerotatng
about a fixed axis 40B. The
particle? anitsrim executes
circular motion.

0¥

- Fig. 4.8: Vectors r,v, a,. a. @
and o fOra particlerotating in
a circle about the z-axis.
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o . d0 . 48 d'e
= P + — = — = -
00 T 18 I where 6 i
EAy
aa=r88+98 -Lég
Toeva uateijdg , wedifferentiate Eq. 4.7b with respect to time:

40 __ 4 ate 4 ‘cose)./i\
v —d!(sme)l dt(
o ~ a8 4

d .
—cos0 2 j—sine X
cos 6 —>~i—sin6—"

Il

= —é(COS ef'i' sn ej)
Using Eq. 4.7a, we get
do

= = —6F.

dr (4.10)
So, theaccelerationof aparticlemovingin acircleis
a = 8 - r@)’t

: dw
Sincew = 6 anda= o 8, weget
a

A ~ 4.114a
= _(021'1‘-1—(11'9, ( )
~ o 4.11b)

- _ 0, (
= aRl“f'aT (4'11(:)

ora= a,+a,.
Thus, for circular motion a has aradial component a, oppositeto r in direction, which
givesthe negative sign. It also has atransverse.component a, along 9. Y ou can seethat the
transversecomponent a,. vanishesfor uniform circular motion. Y ou may now like to work
out an SAQ toconcretise these ideas.

SAQ4

A grindstone of radius (0.5 m iSrotating anticlockwise at @ constant angular acceleration o
of 3.0 rad s~* (Fig. 4.7). Startfrom areference horizontal line OX at timet = 0, when the
grindstone is at rest and find the following for aparticle P situated at the rim of the

a) Itsangular displacement and angular velocity 2.0s later.
b) Itslinear velocity, radia and transverseaccelerationat theend of 2.0s. ®

In Egs. 46 t04.11 we have expressed vectorsr, V and a in terms of scalars 8, @ and a What
istherelation between the vectorsr, v, aand 8, o, o? Let a particlerotate in acircle about
the-axis. The vectorsr, v. aand w, awill be asshown in Fig. 4.8. Let the angle between @
and r be . Then, since LPCO = 90°, theradius CFP of thecircle will bersin ¢. and

y=amrsing

If we now sweep @into I' throughthe smaller angle betweenthem and use the right-hand
rule, wefind that the extended thumb pointstowardsV. Thisgivesthe relation

v=imxr, (4.12a)
NOW, a = a‘_v. - i ((DXI')
t dt

o d dA / dB
Since (A xB)=(—5)xB+A X(T:J* we get
a=~‘£§?—xr+mx$=axr+mxv.

We can once again prove that

a =axr, (4.12b)
a,=mx\V,giving (412¢)
a=a.+a 4.12d)



Eq. 4.12b followsfrom the same reasoning aswe used for v. g, = ar sin ¢, andits direction
is obtained from the right-hand rule ppplied to &and r. Now

a,=@’rsin¢=w (orsing)=ov.

Thedirectionof a, isaong PC. It isthe same direction in which the right-hand thumb points
if wissweptinto Vv through the smaller angle.

Let us now expressr, vand ain termsof plane polar coordinatesfor any general angular
motion of a particleabout afixed axisof rotation.

Eq. 4.6 for r holds good for any kind of angular motion. For velocity we have

dr _dr~  df
V=-E—-‘—i?l‘+r-a,7.

Using EQ. 4.8, we get

V= ir+ rééz Vet Vr. (4.13a)
where v, = Fr,v, =60 (4.13b)
Similarly, accelerationais given as: R

ac Y _ppe At Bey B0+ 099, e
dr ct ot -

= i+ 700+ 100 + 00 — 627,
where we have used Egs. 4.8 and 4,10, Thus,

a = (=0 + (rd +2/6)0. (4.14)

Eqg. 4.14 meansthat the acceleration for general angular motion hastwo components. Oneis
dong # andiscalled theradial component. The other is perpendicularto r andiscalled
thetransver sscomponent.

Egs 4.6 to 4.14 enable usto describe the motion of a particle undergoing angular motion
either in angular variables or in linear variables. You may wonder why we need angular
variablesfor describing angular motion, when they appear more complicated. The answer is
that the angular description is more useful than the linear description when we discuss
angular motion. For example, it is much more convenient to use these equations to find out
the orbits of planets. Y ou will see thisin Unit 6. Similarly, for describing the motion of a
rotating body we will have to consider the motion of various pointson it. It is clear from
Egs. 4.6 to4.14 that different points on the body will not have the samelinear displacement,
velocity or acceleration. But all pointson abody rotating about afixed axis (which does not
pass through the body) have the same angular displacement, velocity or acceleration at any
instant. Therefore, we can describe the motion of the whole body in asimple way if we use
angular variables8, @ and a. You will appreciate this point better when you study Unit 9.
We end this section on the kinematics of angular motion with an example and tn SAQ,

Example 1. Acceleration of a bead on a spoke of a wheel v
A bead moves outward with a constant speed « dong the spoke of arotating wheel. It starts '
from the centreat time ¢ = 0. The angular position of thespokeis given by 6 =@, where @ /

isconstant. Find the velocity and acceleration of the bead.

Angular Motion

Let uschoosethe reference frame asshown in Fig. 4.9. Heref = « and 6=0. Theradial
positionr can be obtained by integrating with respect to ¢ the relation 7 =u.

[dr={ud:

orr=ut* ¢, where ¢ = constant of integration. Fig.4.9: Acceleration of @ bead

on & wheel'sspoke

Att=0,r=0.Thus, ¢ =0.

From Eq. 4.13
vV = /T +r00
= ul"\+utu)0k
=Ve+vpo
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Wefind that the magnitude of radia velocity is constant, whereas thet of the transverse
velocity increaseslinearly with time.

The acceleration isgiven by Eq. 4.14:
a= (F-rdyr+ b+ Zié)a
= —ut0’Ft 2uwb.
The magnitudeof transverse acceleration isalso constant.

SAQS

A particle moves outward along # spiral. Its trajectory is given by r = 0, where Cis a
L oA . ) Lol i

constant equal 1o (1/50 mrad™ . 8 increases in time according 16 9 = - - where ¢ in a

constunt.

a) Find the velocity und acceleration of the particle. |

h) Show that the radial acceleration of the particle is zero when 8 = -\~/q— rid.

[Hint: Use Egs. 4.7, 4.13 and 4. 14.]. o

So far we have described angular motion. We will now study the causes of angular motion.

4.3 DYNAMICS OF ANGULAR MOTION

Aswe have seen earlier circular motion is the simplest kind of angular motion. There are
numerousexamplesaf circular motion in nature. Many satellites arein circular orbits, the
orbits of planetsare nearly circular. The earth's daily rotation carries you around in circular
motion. Pieces of rotating machinery, cars rounding curves etc., describe circular motion.

L et us see what forces cause a particleto execute circular motion.

4.3.1 Circular Motion

Wewill first consider the case of uniform circular motion about which you have read in
Sec. 1.4 of Unit 1. Recall that in thiscase, the particlemovesin a circle with a constant
angular speed. Thus, both r and o are constant. The force I isgiven by Newton's second
law as F = ma.

We use the expression of atrom Eq. 4.11. In thiscase o iszeroas w isconstant. SO we get

~ 2A mv2 A
F=—magr=—mre r=—~-r—r. (4.15)
2
You can recognisethe term - asthe centripetal acceleration of EqQ. 1.30c. Theforce
defined by Eq. 4.15 has amagnitudesv*/r and is directed toward the centre of thecircle.
The negativesignin Eq. 4.15 appearsbecause F isoppositeto r in direction. Thisiscalled
the centripetal force. What doesEqg. 4.15 mean? It meansthat for an object of massm to be
my A

in uniform circular motion, a net force = - ¥ must act on the object, Whenever we seean
objectin uniformcircular motion, we know that a net force of this magnitude must be
acting. Some physical mechanismlike gravity, tension in a string, an electric or magnetic
force, friction etc. must provide thisforce. For example, the giant planet Jupiter circles the
Sun a aspeed of 13 kms™, The gravitational forcekeepsit in its approximately circular
path. Similarly. when a tiny sports cut.rounds a tight curve, the centripetal force needed to
keepit in acircular path is provided by the frictiona force between-itstyres and the
roadbed, and also by the banking of the road. Protonscircle around an accelerator ring
because a magnetic force provides the centripetal force.

Example 2
A geostationary satelliteisheld inits orbit by theforce of gravitation. What isits height
abovethe surface of the earth?

You may have studied about geostationary satellitesin Unit 29 of the Foundation Course
FST 1. You may know that itstime period of rotationis 24 h which is the same as the period
of rotation of the Earth about itsaxis. Now, the centripetal force needed to keep the satellite
in its path is provided by the force of gravitation between the Earth and the satellite. So, if



m_and m, are the masses of the satellite and the Earth, respectively, and - the radius of the
satellite's orbit, then

my? _ Gmng

r r2
2n

wherev isorbital velocity of the satellitegivenas v = s
and T =Time period of rotation =24h=24X60X 60 s
S0, we get, 4n?  _ Gmg or 13 = GmET2 )

9 T—T’ I )
Puttingr =R * h, where R, = the radius of earth and h = height of the satellite above the
surface of earth, we get

Gm.T? 1/3
e 1 _R,. (4.16)
4n? |

Substituting the values of G, m, and R, and putting 7= 24 x 60X 60's, we get

h=359 X 10° m = 35900 km.

SAQ 6

Suppose the moon were held in orbit not by gravitation of the Earth but by the tension in a
massless cable. Estimate the magnitude of the tension in the cable.

Whet isthe force for circular motion in which the angular speed of the particlechanges? For

example, the rotary motion of a particle on arecord turntable spinning up from rest to full
Speed, or aball swung in avertical circle. In this case, we again use Eg. 4.11 for aand

obtan
F=ma=FR+FT (4.17a)
whee Fp = —mro’f = -2 and (4.170)
" r
F = mra 8. (4.17¢c)

1
Thus, for non-uniform circular motion the force hasafinite transverse component in
.additionto the radial or centripetal component. You have studied in Sec. 1.4 of Unit 1 that

the centripetal acceleration and, therefore, the centripetal force changesonly thedirection of
velocity, and not its magnitude. What effect does the transverse force have on the particle?

Role of transverseforce

Thetransverseforce gives the particle afinite angular acceleration: thegreater theforce, the
greater is &, and greater the rate at which angular speed increases. In other words, thisforce
mekes the particle turn faster and faster, if it continues to act. What do you think will happen
to the rotating object if thisforce stopped acting?

If F..iszero and F, continues to act, the particle will continueto rotate in acircle but with
zero angular acceleration, i.e. at constant angular speed. Thus, to keep aparticle moving in a
circleat aconstant angular speed, only acentripetal force is needed. Only if you want to
increaseor decrease the rate at which the particle is rotating, you have to apply a transverse
forcein adirection perpendicular to the radius. Suppose you want to start rotating a wheel,
(potter'swheel or bicycle wheel), or agrindstone or a merry-go-round, which isinitially at
rest (see Fig 4.10). You will have to apply a transverseforce because you want to change its
angular speed from zero to some positive value. You also need a centripetal force to makeit
movein acircle. Hence, you apply aforcewhich is not exactly perpendicular to the radius
but along the direction of the resultant F of the radial and transverse forces. i.e. tilted alittle
towards the centre of the object.

{a) ’ o
Fig. 4.10: (a) A transverse force alang B is needed alongwith the radial forcealong A to set the merry-go-
round moving; (b} you apply a retarding transverse force Fzywhile braking a bicycle wheel,

Angular Motion




Activity
Try to rotate amerry-go-round, a grindstone or abicycle wheel yourself. What isthe
direction in which you apply the force? Draw thedirection on Fig. 4.10a.

We have seen that a transverseforceis needed to increase the angular speed of arotating
object. The same force but in oppositedirection would be required to reduce theangular
speed of theobject. Thisis what happens when you apply brakes while ridingabicycle. The
surface of the brakeB comesin contact with therimof the wheel which rotatesin an
anticlockwise direction (see Fig. 4.10 b). It produces a transverse frictional forceF,. in the
opposite direction, decreasing theangular speed of the whesl.

Actually, frictionis always present between arotating wheel and the shaft or axle about
which it rotates. Therefore, left to itself it will stop rotating, sooner or later due to friction.
Thisis thesame as in straight line motion where aforce of friction slows down amoving
object till it stops.

Example3

A roller coaster has a Loop-the-Loopsection of radiusr (Fig.4.11(a)). What should the
speed of atrain beif it isnot to leavethetrack even at the topof theloop?

(a) h

Fig.4.11: (a) Loop-the-Loop roller coaster isa winding train track in amusement parks. Forceson the train
include gravity and the normal force of reaction between the train and thetrack. Theresultant of these
forcesprovides the centripetal forcetokeep thetrain movingon acircular path;(b) at thetop of theloop
the net for ce on the passenger s points downwar ds.

What are the forces acting on the trainand the track? These are gravity and the normal force
of reaction, between the train and track. Thetrain will stay on the track only aslong as the
normal force of reaction between the train and the track remains non-zero. The forces are
shown in the Fig. 4.11(b} at two pointson theloop, The net force at any point is related to
acceleration by Newton's second law:

Fg+ N=nn.

Let us for convenience, chooseacoordinate system with the positivedirection downward.
At the top of theloop, thevertical component of the force equation becomes

Sy
my
mg+N=ma=——,
r

so that
S 2 Nr
V= gr 4+ —,
- .m
Now, if N isto remain non-zero at the top of the loop, then
(v:=gr)>0,
ie v2>gr,

orv>gr.

Therefore, for the trairi to be in contact with thetrack even at the top of the loop, its speed
should always begreater than \@7 . Sofor atypical roller coaster for which r = 6m, say,

Jer =+/(9.8ms™2)(6m) = 7.7 ms™" . The train's speed, therefore, should alway's be greater
than 7.7 ms™ in this case.

SAQ7 o _ ; ~

A level road has aturn of 95 m radiusof curvature. What is the maximirm speed with which
acar can negotiate thisturn (a) when the road isdry and the coefficient of static friction is
0.88 and (b) when the road is snow-covered and thecoefficient of static frictionis(.21?

68 [Hint: The frictional force between tyresand road providesthe car's acceleration.)




4.3.2 Angular Motion in General
Le usnow determine theforce acting on a particle executing accel erated angular motion,

From Newton's second law, using Eq. 4.14 we have

F=ma = "—.-21\ s A
- "};':: h Fr:z'[r O Ir + m[rO + 27010 (4.184)

whereF, isthe radial force which actsalong Tt and has amagnitude
F, = m(¥ - r8%). (4.18b)

ad F, isatransverse force which acts perpendicular to T and hasa magnitude

E, = m[r + 2/8]. (4.18c)
Equations4.18 are very general. They can be used to solve any problem of motion in two
dimensions, such as planetary motion. These expressions may look a littlecomplicated to
you. Don't let this put you off. All that we need to understandis this. We can use plane polar
coordinatesto describe any two-dimensional motion.Then, such amotion may be seenasa
combination of straight line motion along the radius vector and a rotation about the origin of
theframe of reference. The straight line motionis accelerated dueto aradial force. The
rotation, which is also an accelerated motionisthe result of transverseforce. For most
siluations Eqs. 4.18 are reduced to asimple form.

Sofar we have applied Newton's second law to study the angular motion of a particle.
However,if the rotating object werearigid body, then applying Newton's lawsto determine
the mation of every particlein it would be too cumbersome. Can we, instead, formulatean
andogouslaw that dealsdirectly with rotational quantities? For doing this, we need the
andogues o force, linear momentum and accel eration for angular motion. We have seen
thet the anguiar acceleration is the rotational analogue of linear acceleration. What is the
rotationa analogue of force? The answer is torque, which we will now study.

4.3.3 Torque
Perform the following activity to understand what torqueis.

Activity

Openadoor by applying aforce near its edge aong thedoor's plane. Then try to open it by
pushingit at the same point in adirection perpendicular to or at an angle with the door's
plane. Next push it at a point near the hinges, with roughly the sameforce, In which case
does the door open more quickly?

Yau can repeat this activity to open abook or to open arusty nut with aspanner.

You would have noticed that in all cases, the job waseasier if you applied theforceat the
point farthest away from the axis of rotation and also in a direction perpendicular to the
planeof the door, or the book, or the arm of the spanner. So, how easily an object rotates
dependsnot only on theforce but also on the point and on the angle at which theforceis
applied, i.e. it depends on the torque. We define the torquefor asingle particle observed
from an inertial frame of referenceasfollows:

If'a force F acts on a particlea a point ” which has a position vector r, thetorque % acting

on the particle with reference to the origin O isdefined as
(4.19a) A

T=rXF.
Torqueisa vector quantity (Fig. 4.12). Its magnitudeis given by

t=rFsin B, (4.190)

where B is the angle between r and F. Its direction isnormal to the plane formed by r and F.
Thust and F are always perpendicular to each other. The unit of torqueis newton-metres.
Now, if we substituteF from Eqg. 4.18 (a), we get

t=rXF, +rXF, (4.19¢)
SinceF, isparalel tor, their crossproduct will be zero.
At=rXF.. (4.19d)

It isimportant to realise that torque and force areentirely different quantities. The concept
of torqueprovides a relation between the applied force and the tendency of a body to rotate.

Angular Mation

Fig.4.12: A forceFisapplied
ton particle 2, displaced r
relative to the origin. F makes
an B i

" angle F withr. The
dlrectiﬁon o?vtorque is
perpendicular tothe plane

containing r and F with the
sense given by right-hand rule.
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(a)
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(b}

(c)

Fig4.13:(a) Thetorqueis
greatest with Fandr at right
angles, (b) zerowhenthey are
collinear; (C) therecan bea
torqueon a system with zero

net force.
A
7 0
B
Fig.4.14
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For one thing, torque dependson the origin but forcedoes not. You produce greater torque
for the same force, if you apply the forceat greater distancesfrom the pivot point or the
origin. Again, for agivenforce and distance r, thetorque is greatest when r and F are a
right angles (seeFig. 4.13a).

Thetorque becomes zero when r and F are along the same line (Fig. 4.13b). Thus, even if
torque is zero, theexternal force need not be zero. The torqueis also zero if theforce actson
the point or aong the axis, about which the particleis rotating. This is because in such a
case, the vector r will be zero. Torqueis obvioudy zero if theexternal forceitself iszero.
Therecan aso be a torque on asystem with zero net force (Fig. 4.13c¢). In general there will
be both torque and force.

Let usnow find out the torqueacting on a particlein circular motion in thexy-plane. Using
Eq. 4.17 ¢, and Eq. 4.19 d we get

T =FX mrge .
= mrio(f X 8)sincer = rf
= mr2ok,since r X 0=k, from SAQ 3(c). -
= nK'Za' r_’ ‘)
since ok is smply the angular accel eration vector a. N\
Let uscompare Eg. 4.20 with Newton's second law@sz ma. Thetorqueisthe product of the
angular acceleration & and a quantity mr2. On comparison we can say that this quantity #r*
istherotational analogued the mass. We call the quantity nr ? the rotational inertia or
moment of inertiaand representit by the symbol 1. Rotational inertia has the units kg m?
and accounts both for mass of the particleand for the location of the particlerelative to the
axisd rotation. You know that theinertial massisameasure of the body's resistanceto
changeinitsstatedf motion. In the same way, rotational inertiais a measureof the body's
resistanceto changein itsrotational motion. Note that I would changeif wechangethe axis
of rotation. Incontrast m isa constant. Substitutingl for mr? in Eq. 4.20, we can write for
circular mation of a particleof mass/ about afixed axis of rotation

1=/qQ, (4.21a)

(4.20)

wherel =m#. (4.21b)

Thisequation is similar to Newton's second law. We can deduce the samekinds of things
from it as we did from equation F = ma. For instance, for constant /, the angular
accelerationisdirectly proportiona to the applied torque. | n the absence of torque, an object
continuesto moveat a constant angular speed. And, the same torque will producegreater
angular accelerationfor an object of smaller moment of inertia. You can now apply the Egs.
4.21a and 4.21b to solve aproblem in which the torque actsto change the particle's angular
velocity.
SAQS
You may have sudied in Block 3 of Foundation Course FST § that a neutron star isan
extremely dense, rapidly spinning object that results from the collapse of astar at theend of
itslife. A neutron star of mass 15 % 10* kg has a rotational inertia of 45 X 10% kg m? about
an axis of rotation passing through its centre. The neutron star’s rotationrate dowly
decreases as aresult of torque associated with magnetic forces, If the rate of changein its
angular speed is5 > 107 rad s, what i's the magnitude of magnetic torque?

Another question concerning angular motion is whether we can express the kinetic energy of
arotating particleinterms o the angular variables? Y es, we can. Let ussee how todo it.
4.34 KineticEnergy of Rotation

L et usconsider aparticle of massm moving in acircleof radius r about afixed-axisof
rotation AOB (seeFig. 4.14). Let itsangular speed about the axis be w. Itskinetic energy is

K.E.=lmv2 =1

Em(rw)’l,

= = mrio®
2
Thus, usng Eq. 4.21b, we get

‘KRM%IQ)?__ (422




This is atso termed as thekinetic ener gy’ of rotation of the body.

So far, we have studied some concepts of angular motion. We have seen that an analogy
exists between the kinematics and dynamics of linear and angular motion. Thisanalogy
would be complete if we could define aphysical quantity corresponding to linear
momentum. Indeed, there is such aquantity called angular momentum. We will discuss
angular momentum especially so asto arrive at another very important conservation law.

44 ANGULAR MOMENTUM

We know that the torque on a particle due toaforce Fisgiven as2=r X F.Since F = ap

from Newton's second law, we get dr
d)
T=rXx—.
d a d d)
Now,—(;(r xXp) = ix (mv)+r1 X 7}; (o p = myv)
—o+rx %P ( Vxniv =0).
dr
So, we can write,
dp d
=rFrX —-—=— X .
ter dt dt (rxp)
We define the angular momentum L of the particle with respect to theorigin O to be

L=rxp (4.23a)

Thus, angular momentum is a vector with magnitude

L=rpsiny, (4.23b)

wherey istheangle betweenr and p. Thedirection of 1, is perpendicular to the plane
formedby r and p. It isdetermined by the right-hand rule (see Fig. 4.15). Although L has
been drawn through the origin, this location has no specia significance. Only thedirection
and magnitude of L are important. The unit of angular momentum iSkg m? s ', Thus, the
expression for torque becomes

=L o (429)

dt ‘

You can see that this relation i s analogous to Newton's second law. We can also relate
angular momentumto angular velocity. Let a particleof mass» moveanticlockwisein the
xy-plane about afixed axis of rotation perpendicular to the plane with alinear momentum p.
Then you know that its angular momentum is

L=rXp=rXmy=mrXy,

Using Eq. 4.6 for r and Eg. 4.13 for v we get

L =nrx (if +166)\ . A
=0+ mr*o(r x 9), sincer x r = 0. (4.252)
oL o=mr?ék

Now i is the moment of inertial of the particleand @k isthe angular velocity vector @.
Therefore, wecan write

L=/
Nbtice that thisequation isanalogousto p=mv.

(4.25b)

Let us now work out an exampleon angular momentum.

Example4 Angular momentum of a particlein uniform motion

A block of massm and negligible dimensions movesat a constant speed v in a straight line
(seeFig. 4.16). What isitsangular momentum L, about the origin A and its angular
momentum L, about theorigin B?

Let the particle move along the x-axis, i.e.v= v 1. Asshownin Fig. 4.16(a), the position
vector of the particle with respect toA is

Fig. 4.15

Angular Motion
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r, =xi
Sincer, isparald tov, their cross product is zero and

LA=rA>(mv=mrAxv=0.

The particle's angular momentum with respect to B is

L =mr, Xv
Wecan write
A~ A
ry =X —hj

wherex is thecomponent o r, parallel to v and 4 its component perpendicular to v.
Since,i\x v =0, only Afcontributes to L . Thus,

L,= m(x?— /7_3‘) x 1'?= 0- ml;\;}i\x?

L,= m/)\'f(.

Thus, L, liesin the positive z-direction and has a magnitude mbv. Thisexample shows how
L depends on the choice of the origin. Further, for the particle moving in a straight line, b is
constant. Therefore, the angular momentum of a particlemoving & a constant speed in a
straight line remainsconstant.

S0, the torque acting on such a particleis zero.

Another idea brought out by the above example is this: Do not think that the quantities w, L,
aand* can bedefined, or have meaningonly for angular motion. Any movingobject can
possessan angular velocity,angular accel eration, angular momentum and torque about an
origin. What ismore, the same object can havedifferent values for these quantities about
differentorigins.

SAQ9
A particleof mass » fallsfrom restin theearth's gravitational field according to Galileo’s

lawz =z - i g+ Its horizontal coordinatesare v = x,y =0
a) Determinethe positionvector r and velocity v of the particleat time :.
b) Find the angular momentum L. asafunction of time about the origin.

dL
¢) Determine the torqueacting on the particle about the origin, (Hint: © = " )

4.4.1 Conservationdf Angular Momentum and its Applications
What happens when the net external torque on the particleis zero? Eq. 4.24 becomes

dL
T=—=0
dr

i.e. L = constant.

Thus, we get the principleof conservationaof angular momentum. The angular momentum o
a particle remainsconstant both in magnitudeand direction{ no net external torque actson
it.

Constant angular momentum impliesthat the particle's motion isconfined to afixed plane
normal to L. Thisis becauseby definitionL =r % p and L is normal to the plane containing
r and p. Since L isconstantin direction, r and v will liein a fixed plane normal to the
constant vector L. So we need to useonly atwo-dimensional coordinate system to study the
particle's motion. The principleof conservationadf angular momentum appliesto systems
ranging from subatomic particlesto huge rotating galaxies. Let usstudy some applications
of thelaw of conservation of angular momentum to understandit better.

Pointing a Satellite

Angular momentum conservationis used to steer asatellite, i.e, to point itin any desired
direction. For thispurpose whedlsarefixedinside the satellite, Each wheel hasamotor and
brakes to start and stopits rotation. When awheel starts rotating, the satellite rotatesinthe
opposite directionto conserve the angular momentum. After thesatellite has rotated through



the desired angle, the wheel is stopped and the satellite al so stops rotating. Three wheelsare Angular Motion
normally used so that the satellite can be pointed in any direction. The motorsand brakes
runon electricity generated through solar energy, so thereisno fuel to run out.

It isalso because of the conservation of angular momentum that asatellite's axis of rotation
remainsfixed in space. Satellitesare usually rotationally isolated bodies. So the net torque
actingonthem is zero. Thus, thedirection of L and hencethedirection of the axis of
rotation remains fixed. Therefore, spinning the satellite gives it astability in orbit
(Fg.4.17). '

(a) ()

Fig.4.17: (a) For arotationally isolated salellite, L remains constantin magnitude and itsdir ection remains
fixed in space. Thus, the axisof rotation remainsfixed asit isalong L; (b) thefact that theaxisof rotation
remainsfixed in space for constant L isused for stabilisation of a satellite by spinningit. AB shows a section
of theearth's surface.

Angular acceler ationaccompanying contraction of a string
An object of massm is attached to astring and isrotated in a horizontal plane (the plane of
thedashed line in Fig. 4.18).

The object rotates with velocity v, when tireradius of thecircleisr,. Itisseen that asthe
gringisshortened by pulling it in, the object speeds up even as it rotates. Why does the
object speed up?

Theforce on the object duetothe stringisradial. Here we are neglecting the forceof S
gravity. Thus, the net external torque on the object is zero and its angular momentum is P
consarved. Therefore, asthe string is shortened, the angular momentum should remain Fig. 4.18: N#SS i describes
congtant. The magnitude of the initial‘angular momentum of the object when the radius of circular motion of radius r,
thecircleisr, islmr, X v | =mr.v. sin 90°=mrv,. and velocity v, It is connected
=0 0770 ‘ 0’0 070 . . . toastring§ which passes
The magnitude df the o_bj ect's angular momentum when the radius of the circle is shortened through 2 tubeT, The radius
to rislr X V | = prv SN 90° = pry, of the cirele ¢an be shortened
. . by pulling on the string at 7.
Sinceangular momentum is constant, mr 1;, = mirv.
Thisgives
y =0l

I

Asrissmaller than i, v will be greater thani;, that is the object will speed up.

Let us now summarise the unit.

45 SUMMARY

® |nfinitesimal angular displacements are vectors. The angular velocity and angular
accel eration vectors are defined as

dr’ dt
The directions of angular displacement and angular velocity vectors are taken along the
axis of rotation, and their sense is determined by the right-hand rule.

®  Planepolar coordinates can be used to describe angular motion in two dimensions and
to express the relationship between kinematical variablesof linear and angular motion. _ . 73
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Fig.4.19

For uniform circular motion, r and ® are constant.
~ I~ \" A
r=/r,v=rwla, =-—r.

p
For circular motion 7 is constant, @ varies giving a finite @ and

-

' oA A
r=Ir,v=ro00a=-——r+wo
-

For general angular motion. ris a variabie
. N
r=/F.v =+ 00 R
a=(-/0)r+0+2/6)0=a,+a,

It

The vector forms oi these relationshipsare
V=E@OXr.a, =0xX V. a, =0oxXr
Torque and moment of inertia are the analogues of force and inertial mass for angular

motion. The torque acting on a particledisplaced by r under the influence of force F
around the origin isgiven by

T=rxF.
There exists a relationship analogous to Newton's second law between torque and
angular momentum:
dL,
T:E.whereL:rxp.
For a particle of mass ,m moving in acircle of radius » around afixed axis of rotation
t=la. where | =mr? isitsmoment of inertia.
The kinetic energy of a particle of mass a rotating with an angular speed ® is
] 7
K v T = Im_ !
2

If the net external torque acting on a system iszero, the angular momentum of the
system is constant both in magnitude and direction. Thisisthe principle of conservation
o angular momentum arid it has many applications.

46 TERMINAL QUESTIONS

1

Take arectangular coordinate system. A particle moves parallel to x-axiswith a
constant speed v. Show that the magnitude of itsangular velocity varies inversely as the
square of its distancefrom the origin. Also obtain an expression for the magnitude of its
angular acceleration.

A particle ot mass 5g moves in a plane with constant radial speed /+ =4 m s™!, The
angular velocity is constant and has magnitude8 = 2 rad s™'. When the particleis3 m
from the origin, find the (a) velocity, (b) acceleration and (c) kinetic energy of the
particle.

A panicled massm moves along aspace curvedefined by r = 61 - 3% + (47 = 5)k.
Find its (a) angular momentum, (b) torque and (c) kinetic energy of rotation about the
origin.

Two objects of mass 20g and 30g are connected by a light rod of length | mand movein
a horizontal circle asshown in Fig, 4.19. The speed.of eachis2m s™'. (a) What isthe
total angular momentum of the objects about the centre? (b) If the rod contracts
uniformly to half of itsoriginal length, will the speed of the objects change? If so, by
how much?

4.7 ANSWERS

SAQs

L

The magnitude o the rotation will be2r/3 rad. Itsdirection will be perpendicular to the
face d the clock pointing away from you if you are holding it face up.

2. Since isconstant, _‘f‘ﬂ__.o, (@?)

or d —-i(m-m) 0
dt dat  at =5
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4B B
Smce——(A B)_— B+A I B
lij

d(mm)—gm+m9—2—2€u—)m(AB B-A) H

L
.-.E(m-m)=2a-m, or2o-w=0 1:
Thisimpliesthat o is perpendicular to ®. }H
3. 8 i) m=1f|"ﬁ=\/(cose?+sinej)-(cos9f+sin93)
—\/cosze+sin29—1

ii) ‘9' \/9 0= \/(—s1n61+coseJ) (~sin 6F + cos6j) = W—l

iii) - 0= (COSOl'l'SmQ]) (- sn61+cose_|)_—cose sin0+sn® cose =0

b) A-B—(A'?+Aee) (Br+390)
AB, (r r)+ABe(r 0)+A B, (9 r)+AB (e 9)

=AB.(r- r)+AeBe(9 9) (i-6=0.F=0)
Froma.i) andii) r - F= 1and6 9 1
Therefore, A-B=A4,B, T 4B,
) ?xg =(cos e/iA+sin6f|}) X (—Sineél\'l'COSQj)
=cos® O(i x j) —sin® 8(j X i) (oixi=ixT=0)
2 PN, e ixi=dxi=k
=(cos® B+sin“B)k =k ¢(Cixj=-xi=k)

4. We shdl usethe equationsfor constant angular acceleration givenin Table4.1 along
with Egs. 4.6 to4.11. Hence1.=0.5m,a=3.0rad s>

ad Themagnitudeof the angular displacement isgiven by
8=0st2at’ =Zat’, « @, =0 inthiscase
or 6:;(3rads )><(2 S )=6rad

Thedirection of 8 will point along the axis of rotation from O to A (Fig. 4.7). The
angular speed
o =0+o0=0r=3rads?X2s
orw=6rads
and the direction of angular velocity isalong OA,

b) Thelinear velocity v is given by
v =rr+ 80 = @ since 1.is constant,
orv:O.5mx6rads“6 sncew=6rad s att=2s.

So thelinear velocity of the particle hasamagnitude3m s and isdirected along the
tangent et that point,

Radial acceleration aj, = —@?rf =-(6 rad s ')® x 0.5 mf )
5-18m %,

Transverseacceleration ay = o
= (3.0rad§?) x (0.5m)@ =15 ms2@

You must note that radian is the unit of angle which is dimensionlessand hence its ' o
multiplicationwith any other unit leaves it unchanged. ' N

5 Thetrajectory of the particle is given by

ot - ' 1
r=C0=|—m rad“‘J( t rad] =—m : . i
14 2 2 : ’ : .

@ Thevelocity v =+ T+66 fromEq. 4.13a

Since 7= L = % sand o= 22 = o rads™ . : s
a =n dt ' ‘
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Fig.4.20: N is the normal
reaction which balances the
weight FQ (=mgl F theforce

of friction. Drovlidesthe
necessary centripetal force,

Fig. 4.21

ot~ of A
v = —-r+—2—-oue m s

=2‘£ ELOA m !
4 2

Acceleration a = (7 ~ )¢ + (B + 2768

. ) S » S _
Sincef = — =~ms 2, 8 =arads™
g =

o o’ 550~ [or? 201
a=| =~ 0 P+ —— o+ =
T 2n 2n T

(z-&,4]r+_5_aztza.
n 2n

b) a =0 meansthat

D>

E_E_t’—o ora’r* =2a.

T 27

2 2
Since a= 0, Wegetoct =2 or[og ] 2=1

ie. 02 =21rad® giving 6= :/-1-.2_—rad.

6. Thetensionin the massless cableholding the moon will provide thecentripetal force

<
% Now, if the moon were held by theforce of gravitation between the earth and the
m'oon then,

mv*  Gmmy

7]
r r

wherem and m,, are themasses of the moon and the earth, respectively, and r is the mean

distance between the moon and the earth.

2
So, thetension Tin thecable = TV— - GL;T‘G

.
(6.673 x 107 Nm2kg ™) x (7.35 % 1022 kg) x (5.97% 10%4kg)

orT=
(3.85x 10% m)?

=192 10N,

Compare thiswith the tensionsin cables required tolift cars or trucks which are of the
order o 20,000N.

, 7. Thecentripeta force is provided by theforce of friction between thecar's tyresand the

road (Fig. 4.20).
The magnitude of theforceof friction F =y N = p mg, wherem=the massof the car.

2 i

So Y, mg= ﬂ“’r__’ where v = the maximum possible speed of the car. T ‘
v =iE. C@MV
a) Forthedry road. v = /(0. 88)(95m)(9.8ms ™) =2

b) For thesnow covered road v= \/(0.21) (95 m)(9.8ms‘2) =14ms™,

If this speed isexceeded, the car must movein a path of greater radius which means
it will go off theroad.

. Thetorque of an object isrelated toitsangular acceleration by ¢ = I¢t. Here

I=45x10%%kg m*and o =5 x 10~ rads? .

Therefore, the magnitude of the magnetic torque = (45 X 10% kg m?) X (5x10~* rad s
=2.2x 10* newton-metres.

. a) RefertoFig,4.21. Theposition vector r of the particle with respect to origin at time

ris . 1 “
r =xi+0j+ (ZO = Egt? Jk.
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A~ 1 2 ~

=xi+]zg - = gt° |k

0 (o 28’j
Itsvelocity.at timetis

dr A
v=—=-gtk.
dt 8

b) Theangular momentum
L=rXp=rxmv=m@xv)

. 1 ,)a " y ot
or L=m[x0?+[zo—-£gtzjk]x[—gtk1
= nz[xogt_?+ 0] [ ;\Xfc = -—3, ﬁ X ,I\c = 0] “
N (0, k) P k) B
= mxyglj. f '
¢ Thetorqueacting on the particle about the originis
1= a_ mx, ’_1\
ar 08, 0
@) X

Terminal Questions .
1. RefertoFig.4.22. Let the particle be at Pat the time:. Itsdistancefrom they-axisis k
thenequa to v. So0 =tan-"' (&/ vr). The magnitude o its angular velocity is given by Fig.4 2

08 1 (__’f_j_...;kv_._.
dt [ 1+k2 /v [ w?) v

or,m = %ﬁf‘m. So, w isinversely proportional to OP?2. j 1
The magnitudeof angular accelerationis given by !
godo_ 2t
dt (k2 +vi%)?
2, @ Thelinear velocity of the particleis
V= T+ réé.
Heer=4m s, §=2rads" andr =3m. So,
v=4ms )T+ (3 mx2rad 5'1)6
= (4;+66)m §'=vp +vy

The magnituded the velocity v =+/v3 + v2 a +4

=\]42‘H-+-62m s7'=24/13m 5! v
Itsdirectionis given from Fig. 4.23 by "
2

v . i
tn¢, =~ =8 215 where
Vg 4 $ S

¢, istheangle which v makes with r. . P
b) FromEq. 4.14 accelerationa= (i = B*)f + (rB +2/6)0
Sincer and 0 areconstant; # =0, 8 =0
So a= (—re’)r + 2768
= (-3m X 4rad’s ¥ +(2 X 4m s x 2 rad?s 1)6

=-12ms 2T+ 16ms’0.

Fig.4.23

Its magnitudea = /(12X 12) T (16 X 16) mis™” = 20 m §7 and itsdirectionis

given by tan ¢, = ar - (.. %) = -1.3, where¢, istheangle which a muakes with
ag

T (seeFig. 4.23).

C) Thekineticenergy of the particleisK,, =

=2 mi 77 i




—_— Conceptsin Mechanics %(Esﬁ kg] -(3m)2(2 cad 5-1)2
=0.1joule
3. Sincer = 6t4iA- 312f+ 4 - 5)Ak
V= % = 24r3ih— 6r}+ 12:%2

Angular momentumL =s X p=mrxyv

or L=m[6ri - 32§+ (4r° = 5)kIx [247°7— 64+ 12°K)
=361k - 72655+ 726K — 3601 + (961° ~ 120 )] + (241 — 300)1]
m{=(12% + 300)i + (246° - 1201°)] + 36¢°k]

: b) Torque <= % = m(—(48¢° + 30)i + (144¢° - 3601%)] + 1801 k]
gt ¢) Kineticenergy o rotation = —=mv-v

NI -

mi576:° 1 36t° +144r"]
=18me {160 + 417 +11.

4. 8 Referto Fig. 4.24. Thetotal angular momentum o the system
={002kg) (2ms™) (0.5 m) T (0.03 kg)2m s ) (3.5m)
=0.05kgm*s".

b) Sinceno externa torqueacts on the system, the angular momentum remains
conserved. As therod islight, we shall assumeit to be massess. Asthe particles
remain connected by the rod the magnitudesof their vel ocitiesmust be same
(=v,say). When the rod gets contracted to haf itsoriginal length theradius of the

LU circular path (shown dotted) becomes0.25 m (Fig. 4.24). So, thetotal angular
momentum

2ms

= (0.02 kg) (v (0.25m)+ (0.03kg) {+)(0.25m)
e Uim =0.05 X0.25v kg m
Fig. 424

From the principle of conservation of angular momentum, we get
005kg m? s~'=0.05x 0.25 v kg m.

or v =4m s™. So, speed of each particle becomes4m s*'i.e. double the original
vaue
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5.1 INTRODUCTION

In the previousfour units you have studied linear as well as angular motion of a variety of
objects. However, by and large we restricted our study to motion of objectson theearth. We
did discuss some examples of motion of heavenly bodies but they lacked in details for want
of the knowledgeof gravitation. Therefore, we shall study gravitation in this unit.

Weshall start from thefamiliar Kepler's laws of planetary motion to arrive at the law of
universal gravitation. We shall then develop the concept of gravitational field and potentia
and use them torevisit theideas of earth's gravity, and escape velocity. Finally, weshall
visualise the gravitational force as afundamental forcein nature. Alongwiththat we shall
discuss, in brief, the electroweak and strong forces which are the other basic forcesin
nature.

In Block 2, we shall apply the conceptsof mechanicsdeveloped in thisblock to motion
under central conservativeforces, systems of many particlesand rigid bodies. We shall also
study motion in acceleratingframes of reference.

Objectives

After studying this unit you should be able to:

o apply the law of gravitation

infer that the law of gravitationisuniversaly true

compute gravitational intensity and potential

solve problemsrelated to the variation of accelerationdueto gravity with the height,
depth and latitude of a place

deriveexpressionfor velocity of escape

distinguish between thefundamental forcesin nature.

® 0 o

52 LAW OF GRAVITATION

Y ou must be awarethat the'Law of Gravitation' was formulated by Sir Isaac Newton. The
popular story goeslikethis:

Newton was sitting under atree from which an applefell and struck him on his head.

This gave him the necessary impetus to discover the law. There could have been another
part in the story: Newton was staring at the moon when theapple hit him (Fig. 5.1)!
Newton's stroke of genius was that he redlised that the forcewhich causesapplesto fail
to the ground is of the same kind asthe force which causes the moon to orbit the earth. In
fact, the law of gravitationdid not strike Newton in hisfirst effort. He waslooking for the
answersto many questionsrelated to wide-rangingtopicsfrom the 'Law of Falling
Bodies' due to Galileo to Kepler's 'Laws of Planetary Motion'. Let usfirst arriveat the
law of gravitation using Kepler’s-laws (Fig.5.2). Weshall then examine its universality

Fig. 5.1: Newt on reelised that all
objectsin the univer sewhether on
earth or in heavensmove under
the influenceof the sameforceof
gravity.
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