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9.1 INTRODUCTION

In the previous unit you have studied the phenomenon o scattering. We had treated the
projectile thereas a point mass. In Units 6 and 7 you have studied about the motion of
planets around sun by treating them as point masses. As a matter of fact so far in this
course, we have been concerned primarily with the motion of point masses. In nature,
however, we hardly come across an ideal point mass. We have to deal with motion of bodies
which have finite dimensions. So we need to devel op atechniquefor studying the motion of
such bodies.

A special classdf such bodiesis known asrigid bodi es. In this unit you will first learn what
arigid body is. You will see that the definition of arigid body provides a model for studying
the motion of variouskinds of physical bodies. Y ou will then study about the different kinds
of motion of arigid body. A rigid body can execute both translational and rotational motion.
We shall see that the general motion of arigid body is a combination of both trandation and
rotation.

You will find that the translational motion of arigid body can be described in termsof the
motion o its centre-of-mass. So, we shall be able to apply the dynamics of point massesfor
description of trandlational motion. Hence, our chief concern will be the study of dynamics
of rotational motion of rigid bodies.

InUnit 4 of Block | you have studied thedynamics of rotational motion of ¢ particle. You
aready know theconcepts of angular displacement, angular velocity, angular acceleration,
moment o inertia, kinetic energy, torque and angular momentum for a particle. In this unit
we shall extend these concepts to the case of rigid bodies. This will enable us to study about
avariety o applicationssuch as the rotation of flywheels, despinning of satellites, motion
of rolling objects and so on.

Finally, in this unit we shall revisit the important principle of conservation of angular
momentum. W e shall see that the principle holdsfor rigid and other extended bodies. We
shall apply the principle to explain the acrobatics performed by a diver or aballerin~ Finalflv
we shall discuss very briefly about precessional motion.



In this unit we shall very often refer to the contents of Unit 4 of Block 1. So it i s suggested
thet you go through that unit once again before you start this unit.

In the next unit we shall aim to study the analysis of motion from the point of view of a
non-inertial observer.

Objectives

After studying this unit you should be able to

e identify arigid body

o distinguish between the features of translational and rotational motion of arigid body
outline thefeatures of the general motion of a rigid body

e explain thesignificance of moment of inertiaof arigid body about a certain axis

e Solve problems based on the concept of rotational dynamics o rigid bodies. -

9.2 A RIGID BODY AND ITS MOTION

Let usconsider the motion of a Yo-Yo (Fig.9.1). It runs up and down as the spool winds and
unwinds. The Yo-Y o rotates about an axis passing through its centre and perpendicular to the
plane of this paper. You can see that thisaxis does not remain fixed in space. It moves
vertically downward or upward with the Yo-Yo. In principlewe can use Newton's laws of
motion to analyse such a motion as each particle of the Yo-Y o obeys them. But obtaining a,
description on a particle-by-particle basis will be an uphill task as the number of particlesis
very large. So we would like to find a simple method for analysing the general motion of an
extended body likea Y o-Yo. We can find such a method by using the model of arigid-body.
So let usfirst learn what a rigid body is. ’

9.2.1 What isa Rigid Body ?

You must have seen a wheel rotating about its axle. Let us consider any two points on the
whed. Wefind that the relative separation between them does not change when the wheel is
in motion. But if we take the example of the diver of Fig. 7.12 wefind that the relative
separation between two different parts of her body does change. The former is an example of
arigid body whereas the latter is not.

Technically speaking, arigid body is defined asan aggregate of point massessuch that the
relativeseparation between any two of these always remainsinvariant, i.e. for any position
‘of the body r,,. = aconstant (Fig. 9.2). Soarigid body is one which has adefinite shape. It
does not change even when adeforming force isapplied. In naturethereis no perfectly rigid
body asall real bodiesexperience some deformation when forces are exerted. So a perfectly
rigid body can only be idealised. But we shall seethat this model isquite useful in cases
where such deformations can be ignored. For example, the deformation o a cricket ball asit
bouncesoff the ground can beignored. You know that if a heavy block isdragged along a
plane, frictional force actson it (see Sec. 2.2.2 of Block 1). But its deformation due to the
frictional force can be neglected. However, you cannot neglect the deformation of arailway
track dueto the weight of thetrain. Likewise, thedeformation of thefibre glass pole used by
a pole-vaulter can also not be neglected. So in the last two cases we cannot apply therigid

body model.
You may now like to identify the objects that can be approximated by therigid body model.

SAQ 1
Which of thefollowing can be considered asrigid bodies ?

a) Atop b) A rubber band c) A bullet d) A balloon e) The earth.

Let us now study the motion of arigid body. A rigid body can execute both translational and
rotational motion. Let usdiscuss their basic features.

Rigid Body Dynamics ~
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Fig. 9.1: A Yo-Yo

Fig. 9.2: For any position of a
rigid body, r;;, = a constant
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9.2.2 Trandational Motion of a Rigid Body

Suppose you are travelling in a train. Then during a certain interval of time your
displacement will be exactly equal to that of your co-passenger provided both of you do not
move with respect to the train. This will also be truefor any two objects attached to the
body of the train, say a bulb and a switch. Thisis the characteristic of translational motion.
A rigid body issaid to execute pure translational motion if each particle in it undergoes the
same displacement as every other particle in any given interval of time. Trandlational motion
of a rigid body is shown schematically in Fig. 9.3.

Fig. 9.3: Translational motion of arigid body

Y ou must have noted that the path taken is not necessarily a straight line. Now let us
measure the magnitudes of the displacements of the points P, O', Q as the body moves from
the position A to B. Each is equal to 3.9 cm and the lines joining these positions are parallel
to each other. So they undergo the same displacement. Y ou may verify thesamefor the
motion of the body between positionsB and C.

SAQ 2
(@ Measure the magnitudes of the displacements of P, 0" and Q between positionsB and C
and verify that they are equal.

(b) Givetwo examples df a pure trandational motion.

Now that you have worked out SAQ 2, you can see that if we are able to describe the motion
of asingle particlein the body, we can describe themotion of the body as a whole. We have
done this exercise a number of times before. However, you may liketo consolidate your
understanding by working out the following SAQ.

SAQ 3
A rigid body of mass M isexecuting a trandational motion under theinfluence of an
external force F,. Suggest a suitable differentia equation of motion of the body.

What does the answer to SAQ 3 signify? We know that therelative separation between any
two pointsof arigid body does not change, i.e.

P 0. o.1)

So al the pointsfollow the same trajectory as the c.m. Hence, for studying translational
motion, the body may be treated as a particle of pass M located at itsc.m. You may recall
that we had treated the sun and a planet as particles in Unit 6. They were treated as particles
as their sizes are negligiblecompared to the distances between them and also because the
shapesof these bodies wereinsignificant. But here we are considering arigid body asa
particlefor another reason as explained above.

Thuswe can represent the tranglational motion of arigid body as a whole in termsd the
motion of itsc.m. It becomes easier to describe the translational motion in this way. In the
previous units we have dealt with caseslike a body falling down an inclined plane, acricket
ball hit by a bat, etc. There we had applied the aboveidea. So before we go over to the next
sub-section it would be worthwhile to know about the position of c.m. of arigid body.



The problem of locating the c.m. of arigid body is complicated when its shape i. Rigid Body Dynamics

asymmetrical. However, we shall deal mostly with bodieshaving a symmetrical siape.
Positions of c.m.s (c) of several symmetrical bodies have been shown in Fig. 9.4. -

> 7

Fig. 9.4: Centres-of-mass of symmetrical rigid bodies
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Let us now discuss the rotational motion of arigid body.

9.2.3 Rotational Motion of a Rigid Body.

Let usconsider the motion of the earth. Every point on it movesin acircle (the
corresponding latitude), the centres of which lieon the polar axis. Such amotionisan
example of arotational motion. A rigid body is said to execute rotational motion if all the
;iarcicles init move in circles, the centresof which lie on a straight line called the axis of
rotation. Fig. 9.5 shows the rotational motion of arigid body about the z-axis. When arigid
body rotatesabout an axisevery particlein it remainsat a fixed distancefrom the axis. So
each point in the body, such as P, desaribesacircle about thisaxis. You must haverealised
that perpendicularsdrawn from any point in the body to the axis will sweep through the g
same angle as any other such linein any given interval of time.

Fig. 9.5: An example of rotational
motion of arigid body.

We shall now study about the general motion of arigid body.

9.2.4 General Motion of a Rigid Body

Thegeneral motion of arigid body is acombination-of translationand rotation. This can be
understood by considering a simpleexample showh in Fig. 9.6.

. A i v o

Fig. 9.6: Tobnngthebody from positionA to some new position B, first trandateit so that the centre-of-mass i

coincides with the new centre-of-mass. and then rotate it around the appropriateaxis through thecentre-
of-massuntil thebody isin the desired position.

Y ou may now perform an activity for the sake of better understanding of the general motion
of arigid body.

Activity —_— o
Takeany book lying on yotirtable and keep it in the bookshdf in itserect posture.

Here you first shift the c.m. of the book to a new position, Then you turn the book about a
gitable axisthroughhe c.m. to make it stand erect on the shelf. So you can see that the
aha ¢ motion of the book isa-combination of trandation and rotation. Now, study the

follgying figure carefully. ” 6
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Fig. 9.7: A rigd body moving in combined trandational and rotationat motion as seen from referenceframe
(x,Y,z). Notice thet ther eferenceframe fixed on the body (x, ¥+, z) changesits orientation with respect

to (x.y, z) asthemation proceeds

Fig. 9.7 showsa case of combined trandational and rotational motion of arigid body. It can
be considered as aschematic extension of Fig. 7.12. Study Fig. 9.7 and work out the
following SAQ.

SAQ 4
CompareFigs. 9.3and 9.7. Mention very briefly thedistinctivefeatures in respect d the
- observer’s reference axes(x, y, z) and the body-fixed axes (x', y', z).

Now that you have worked out S4Q 4 you can realisethat determiningthe location 0’ in
Fig. 9.7 is thegood old problem of the motion of ¢.m. which we have studied in detail. As
stated earlier our chief concernin this unit isto suitably study therotational aspect. For this
we have to develop aformalism to analyse rotational motion of arigid body. Now, in Unit 4
; . of Block 1, you have dready studied thedynamicsaof angular motion of a particle. We shall
R : ' only make an extension of that study here.

Recall from Sec. 4.3.3 of Block 1 that a particle executing rotational motion possessesa
moment of inertia(denoted by 7). For rotational motion | plays the same role as the massdof
the particle playsfor trandational motion. It is very important to understand the meaning of
s moment of inertiadf arigid body for its rotational motion. So let us now learn about the
'moment of irertia’ o arigid body. We shall start by determining the angular momentum o
arotating rigid body about the axisof rotation.

9.3 MOMENT OF INERTIA

We know that the earth rotates about the line joining the poles which passes through the
centred earth. How can we cal cul ateits angular momentum about the axis of rotation? We
know that when theearth rotatesabout itsaxis, every point on it executesa uniformcircular
motion about this axis. Theradius of thiscircle decreases with thelatitude of the point. The
circleaong which New Delhi moveshas a smaller radius than that along which Trivandrum
moves. So the linear velocity of each pointisin generd different.In order to determinethe
angular momentumof a body we shall first have to determinethe angular momentum of
each particlein it. And as angular momentumisa vector quantity we shall add vectorialy
the individual angular momentato get the angular momentum of the body. Let us now
consider agenera situation.

ol

]

: Refer toFig. 9.8. A rigid body isrotating about an axis AB fixed in an inertial frame with a
Fig. 9.8: A rigid body rotating uniformangular speed ®. Three point masses my, m,, m, at distancesry, ry, r4, respectively,,
< about an axis AB. from AB have been shown. m; movesaong acircled radiusry and let its velocity be,.
Using Eqg. 4.23 of Unit 4, Block 1, we may say that the angular momentum Ly, of m; is

given by




Now the massm;, isrotating along acircle of radius r, whose plane is perpendicular to A5.

In fact every point mass is moving along a circle whose plane is perpendicular to AL? Using
Eq. 4.13a of Unit 4, Block 1, we get

. A
i 1‘1Pl+rl 9]01,

whene/}, is the unit vector along r, and é, is perpendicular to/}, in the sense of increasing
A
angle 8; . You may recall that the directions of ?\1 and 8, change with time. Again

él= o, whichis samefor all the point masses. So we get,
, YA
L1=m1__r1 l"\lx(rll/‘\l+r16lel)

Now, ‘t X f*, =0and ', X 6,::’1‘. where 1 is the unit vector along BA (See SAQ 3c
of Unit 4 of Block 1).

Similarly L, = my ro? @, Ly =m3 5% @ and so on.
So the angular momentum of the body is given by

L=L+LyiLs4

=(m )‘12+ m r% +m; r_% +..)0
=Iw, 9.2)
where [ = Zm,- r? 9.3)

!

is calted the moment of inertia of the body about the given axis of rotation. Here the
summiition extends over al the point masses that constitute the body. The SI unit of
moent of inertiaiskgal

1f the mass of the boay be M then we can express| as | = M2, 9.4)

where k isa quantity having the dimension of length. This quantity is called the radins uf
gyration. If we corispare Eq. 9.4 with Eq. 4.21b of Unit 4, we find that & is equivalent t= th.
distance from ihe axis of rotation of the point where the entire mass o e body wt: be
considercd to he concentrated. In other wordsit is the distance betweci the wxiy of roitio
and thie ¢c.m. of the body.

Did you notice the similarily between the expression (9.2 s the same for inent
momentum (i.e. Mv). Since @ is analogous to Vv (sue Tab! .1}, { must be analogous ..
M. In other words, | is the rotational analogue of mass abous « dich »au have read in

Sec. 4.3,3. Thisanalogy also becomes evident from the expreszizn of K.E. of rotation X
which you may work out in the following SAQ.

SAQ 5
Show that for the body in Fig. 9.4 the K.E. of rotation is given by
K=rla? 9.5)
=3 : .

Compare the expression for K with that of K.E. of linear motion and find the rotational
analogue of mass.

Sofar in this section we have considered a case where the axis of rotation lieswithin the
body. The above analysis also holds if the axis lies outside the body; e.g. the bob of a
conical pendulum (Fig. 9.9).

Now that you have understood the meaning of the term 'moment of inertia’ we may proceed
to sudy themethod for its determination.

Rigid Body Dynam:

As dared in Sec. 9.2.3 the general

motion of arigid body can be
consider ed asa translatiuiial asotion

of itsc.m. and a rotational motion

about its¢.m. Hence, the

considerations of this unit apply also

to rotationsabout an axis that is net

fixed in an inertial frame, provided

the axis passes through thec,m. and

themoving axis always has the same .
direction in space. !

In dtuations invelving asymmetric
objects, L and @may hein differn
directions, In that case ¥ cansci be
expresszd as asingle nuaaber bu i o
more complicated mathematical v

called tensor.
E
O
m! \
B - A

Fig. 9.9: B isthe boh of a caniua:t
pendulum and OA, the axis of
rotation. -

65

AL b s et e




Systems of Particles

my i,
(a)
1A
!
Iy | I ]
myg lC mg
|
|B
(b)

Rig. 9.10: (a) A dumb-bell having
nasses my and my at its ends; (b) the
letermination of moment of inextid of ,
hedumb-bell in {a) about an axis
yassing through the c.m. of m) and

ny and perpendicular totheline

oining them.

9.3.1 Determination of Moment of Inertiaof a Rigid Body

We shall now put EQ. 9.3 to use. To start with let us try to determine the moment of inertia
of a dumb-bell (Fig. 9.10a). Weshall assume that the thin rod joining the massesn; and rm,
is of negligible mass. We shall also consider m; and m, as point masses. These assumptions
may appear oversimplifying. But this model finds many applications in molecular
spectroscopy as this can represent a diatomic molecule. Let usfirst work out thefollowing
example related to the determination of moment of inertiaof the dumb-bell. Then we shall
study an application of this model.

Example 1

Refer to Fig.9.10b. AB is perpendicular to the line joining the masses m; and m, and it
passes through C, the c.m. Using the assumptions stated above show that the moment of
inertia of the system described in Fig. 9.10bispu? , whereg is the reduced mass of the
system and r is thedistance between the masses.

For the given system the summation of EQ. 9.3 will have two terms. i.e.
1=' ny I“z. +m2r§ .

SinceCisthec.m. wehavem, ry = myry

ry + I

o L_T2 (by addendo)
m, my my + my
myr .. mir
r = 2 y Py = L (T =r + I'z)
my+ ny- --m,_+ ms

2 m, ms, )
r =T .

2 my
rl+my | ——— =
. mq+ My ml +m2

Hence, using Eq. 7.6 we get,

I =w
“You may now liketo study an application of Example 2 by working out the following
SAQ.
-SAQ 6

The atoms in the oxygen molecule (O,) may he considered to be point massesseparated by a
distance of 1.2°A. The molecular speed of an oxygen molecule at s.t.p. is 460m s-L. Itis
known that therotational K.E. of the molecule is 2/3 of itstranslational K.E. Calculate its
angular velocity at s.t.p. assuming that molecular rotation takes place about an axis through
the c¢.m. of, and perpendicular to the linejoining the atoms.

We havejust now applied Eg. 9.3 to determine the moment of inertia of a system made up
of discrete particles. In each of the systems (dumb-bell and diatomic molecule€) the tota mass
isdistributed among particles whichare not attached to one another, i.¢. the particles that
comprise the system can beenumerated. We shall now take Up the case of systems where
there isa continuousdistribution of matter. Here the particles cannot be enumerated. For
example, we have bodies like a uniform rod, a sphere, a cylinder and so on. For that we shall
modify Eq. 9.3 in thefollowing manner.

Let » bethe perpendicular distance of an infinitesimal mass Am of the body from the axis.
Then from Eq. 9.3, we get

1 =M 52 am = J- r2dm 9.6)

where Am getsreplaced by dm, thedifferential of mass and the sutnmation by integral. The

integral isa definite one extending over the entire body. Using Eq. 9.6 the moments of
inertiacf symmetrical bodiesabout certain axes can be determined.

The moments df inertia about certain axes of afew common symmetrical bodies have been
given inTable9.1 (Inall casesM represents the massof the body in thediagram). We
have derived these resultsin Appendix B.



Table 9.1
AXis Axis
Thin rod about ‘ Thin rod about
axis through axis through one
centre perpendicula 1 end perpendicular
to length \,‘/ to length
[= M2 ) Mi>
12 (a) =3 (b)

Ring about axis

" Rectangular plate
passing through

about axis through

centre and centre and
perpendicular to perpendicular to
“/E plane " its plane
_ M e AN
2 0 (d)
Ring about Ring about

any diameter any tangent line

(e) ®
) Annular cylinder Solid cylinder
— about cylinder about cylinder
e axis axis
g’
R X MR?
- M 2 2 = —
=Rt R) (g 2 )
Solid sphere Thin spherical shell
i R about any about any
diameter diameter
AR l
® 0)]

So you have understood the meaning of the term 'moment of inertia. You have alsocome
to know the value of moments of inertia of several bodies about certain axes. So we may
proceed to study the dynamics of rotational motion.

9.4 ROTATIONAL DYNAMICS OF A RIGID BODY

Y ou know that dynamics is the study of accelerated motion and itscauses. For translational
motion it isgoverned by Newton's second law, i.e.

F =2
de’
The rotational analogue of Newton's second law of motion, as you know (see Eq. 4.24 of
Unit 4, Block 1) is given by

T = L.
dt

where t isthe torque acting on the particle and L its angular momentumand I the moment
of inertia about the axis of rotation. You may recall that you have studied the dynamics of
angular motion of aparticle in Sec. 4.3 of Block 1. We shall now. apply the concepts you
have studied in Unit 4 of Block 1 mostty toarigid body. You have studied the necessary
principles and laws there. We shall now list them in the Table 9.2. Here we have shown the

Rigid Body Dynamirs
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Systems of Particles equivalent aspects of transational and rotational motion. A few spaces have been left blank
which you may fill in.

Table 92
S.No. Trandlational Motion Rotational Motion
) Position, r Angular position, 8
if) velocity, v = Angular velocity & = %
w 428
iit) Acceleration,a= [;—T = % Angular acceleration.a= d¢ =di?
iv) Mass, m Moment of inertia, |
V) Linear momentum, p= mv Angular momentum. L = /o
|
vi) Force, F Torque,© J
vii) Newton's second law Analogueof second law l
- 4p _ =&
F = ;= ma T = ar I nevasenrniene
viii) Work done = F.dr Work done = | 7.8
ix) KE. = -l-mv2 KE = sieerearines
E =3
X) Principleof conservationd linear | ceeceesssssssssssssssnsnssnnsnnnnnnnnnnnes
momentum:
When the net external forceactingOon = | «vievieiriiiantiaiieiniiieisariaiarernes
a body iszero the linear momentum
of itScm. remainsS CoNStant. | civeieisrnesmaaiasiriatisiisesinniciiienas
xi) Impulse Angular Impulse
is : : o erereeecisiiiearnseresteratninitesninonas
= [Rwdr =p) - p(y) )
S

SAQ 7
Fill in the blank spaces of Table 9.2.

Now that you have studied Table 9.2 and worked out SAQ 7, we can discuss some
applicationsof the principles of rotational dynamics. We shall start with the rotational
analogue of Newton's second law.

9.4.1 Rutational Analogue of Newton's Second Law

We have used the equation F = %? to describe the dynamics of linear motion of a body. For a

system having constant mass thisequation becomes¥ = ma. To study the rotational
dynamics of abody wefirst need to know itsmoment of inertial about the axis of rotation.
Then we shall use the rotational analogue of the above equation, i.e.

dL -
T

Now, we know from Eq. 9.2 that,L = oo, . ¢ = dir (I®).
For asystem having constant 1. we get

PRI N 9.7)

T in Fg, 9.7 isthe net torque acting on the body. So we must take care to determir:e all
sorijues That act on the body and take their vector sum to obtain the net torque.




We have studied about the linear motion of a many-particlesystem in Sec. 7.3. There we Rigid Body Dynamics

found that only external forces matter. The internal forcescancel in pairsaccording to
Newton's third law. Now, let us see what happensin the case of internd torques. Refer to
Fig. 9.11. It showstwo particles 1 and 2 of arigid body. The internal forceon 1 dueto 2 is
F, and that on 2dueto 1 isF,,. Let usfind out the totd internal torqueabout a point O
due to these forces. You may recall from Eq. 1.16 of Block 1 that this totdl internal torque is

given by,
Sinw=r1XFy1 t ryxFy,

Now, r, X F,, = r, F,, sin(m - 0)) n = Fy rySné;n, Fig. 9.11: Internal forceson two
particlescf arigid body.

wheren is the unit vector perpendicularto the plane o this page and pointing towards you.

And,
rXFiy = i Frpsin(m-6y) (- M) =—Fipr,8n 6, 0 fﬁ:? ' Tu
oo Tym =(Fq 1SN0 - Fiyr,Sn6,) n. 9.8) “ {M}\Q
Weknow from Newton's third law that F,; and F,; areequal-and opposite. So Fy; = Fs;. |

Again, we can see from Fig. 9.11 that, l

)‘1Sin 61 =r sn 62 =ON,

‘_

\
where ON is thelength of the perpendicular drawn from O on the line joining the points 1
and 2. Hence, from Eq. 9.8, we get
[

Tim=0 . \
S0 we see that internal torquescancel in pairs. Thus, the torquein Eq. 9.7 is the net externa (“_)

torque. T
L et us now work out an example to illustrate Eq. 9.7. You will find that the Situation is

analogous to the case of accelerated linear motion as the applied torque and the angular
velocity of the rotating body are in the samedirection.

Example 2
A solid cylinder of massM ismounted on a horizontal axle over awell (Fig.9.12a). A rope

is wrapped around the cylinder and a bucket of massm is suspended from therope. Find in

termsof m, M and g an expressionfor the acceleration of the bucket asit fals down. ‘
Neglect the massof the rope and any friction between the axle and the cylinder. Assume that mg
the rope does not dlip over thecylinder asit unwinds. ®)

If the bucket were not connected to thecylinderit would have accel erated downward at the
rate g. But now thereisan upward tenson T an the bucket due to therope. It reducesthe
net downward forceon the bucket. It also exertsa torque on the cylinder, The magnitudeof
the downward force on the bucket (Fig. 9.12b) is given by

F = mg -T.
8 | _ | T
But F=ma, wherea isthelinear accelerationof the bucket.
. (c)
woma=mg - T : 9 Pig. 9.12: Diagram for Example 2

If we take the end view of the cylinder (Fig 9.12c), we see that the rope exerts atorque of
magnitude ©( = RT) on thecylinder. Thisgivesriseto an angular acceleration & given by

Eqg. 9.7 as

T , o - (9.10)

= >

A

~lia

o =

wherel isthe moment of inertiadf the cylinder about the axis.

Since the rope unwinds without slipping,a is related to a. Using Eq. 4.1la of Block 1 we
get from Eq. 9.10 that, ’ o

a=or = &L | | ©.11)
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ms.

Fig. 9.13: The falling mass m,
can providehorizontal accderation to
Ill].
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Hence, from Egs. 9.9 and 9.11 we get

ma = mg La
= - R

or a =& . (9.12a)

Weknow from result (h) of Table 9.1 that for thecylinder 1 = % MR2. So, we can rewrite
Eq.9.12a as

qg= 8. (9.12b)
M
m + ~

Eq. 912b indicates that if M << m, then a =¢. In other words if the mass of the cylinder
is very small compared to that of the bucket then therotation of the cylinder does not matter.
The acceleration of the bucket issimply equal to g.

However, in general we can say that the gravitational force on the bucket does not only
provide its linear acceleration, it also givesrise to the angular acceleration of the cylinder. As
aresult, the linear acceleration of the bucket-decreases. A falling mass can provide horizontal
acceleration to another mass (Fig. 9.13). From Example 2, we have just now seen that a
falling mass can aso generate angular acceleration in another body.

So wehave learnt to apply the rotational analogue of Newton's second law of motion. This
study throws some light on the concept of equilibrium of a body. Y ou may recall that we .
have studied about equilibrium of forcesin Sec 2.2.2. of Block 1. A body had been said to be
in equilibrium if the vector sum of all the forces acting on it is zero. This is equivalent to
saying that thelinear acceleration of the c.m. of the body is zero. But we know that the
general motion of arigid body isacombination of the translational motion of thee.m. and a
rotational motion about an axis passing through the c.m. So we can say that our study in
Sec. 2.2.2 0f Block 1 wasrestricted to the case of trandlational equilibrium only. The genera
condition of equilibrium of a body must include therotational aspect too. We shall study
briefly about this now.

Equilibrium of a Rigid Body

A rigid body issaid to be in mechanical equilibrium if with respect to aninertial frame

(i) the linear acceleration @, of itsc.m.iszero and (ii) its angular acceleration aabout any
axisfixed in thisframe is zero.

The above conditions do not imply that the body must be at rest with respect to the frame. It
should only be unaccelerated. Itsc.m., for example, may be moving with aconstant velocity
V. and the body may be rotating about afixed axis with a constant angular velocity.

The trandational motion of the body, asyou know isgoverned by the equation
Fe =M a‘”’ )

whereF, is the net external force acting on the body of massM. So condition (i) may be
expressed as follows : The vector' sum of all the external forces acting on the
body is zero. In other words, if a-rigid body is in trandational equilibrium under the
action of several external forces F,, F,, F, and soon, we may write the above condition as

F, + F, +F; + ... = 0. (9.13a)

Theother condition isgiven by & = 0 for any axis. We know that the angular acceleration
of arigid body isrelated to the net externa torquet as

T =/0,




where | is the moment of inertia of the body about the axis of rotation. So condition (ii) Rigid Body Dynamics

may be.expressed as follows : The vector sum of all the external torques acting
on the body is zero. In other words if arigid body is in rotational equilibrium under the
action of several torques 7,, T,, T3 and so on we may expressthis condition as

T+ Tyt T3+ .n= 0. ' (9.13b)

Hence, arigid body issaid to be in mechanical equilibriumif both the conditions9.13 aand
b hold.

Let us take theexample of aman standing an aladder (Fig. 9.14). Suppose that the entire
system isin equilibrium when the man is at the point M o the ladder AB. We shall first
find out what are the forces acting on the system. The weight of the man acting vertically
downwards through M is w. The weight W of the ladder acts vertically downward through
itsmid point G. N; and N, are the normal reactions at the pointsdf contact A and B of the
ladder with thevertical and horizontal surfaces, respectively. Sincethe point A has a
tendency to dlip towards O, the force of friction Fy at A actsalong OA. Again B hasa
tendency to slip along ©B. So theforce o frictian F, at B is along BO. So condition (9.13a)

demandsthat

w+ W+ N +Ny +F; +F, =0. Fig. 9.14: A ladder in equilibrium

Now let usdefinethe Cartesian x and y-axes along OB and OA, respectively. Then the
above condition may be written as

N A A .
wi -wi N T enf RS - =0
I A
or Ny —Fy) 1 +(N2+F1.—W—W)‘] =‘0.
Hence, we get
' Ny~ F,=0, Ny +F, —w -W =0 .
i.e. N|:F2 ansz +F1:W +Ww. (9.14a)

Now, we shall take care of the condition (9.13b). For this we have to determine the tota
torque acting on the system about any point. The choice of this point is quiteimportant. A
proper choice helps usin getting the final condition in asimple form. Let us see how. If we
select the point A, the torques of F, and N; vanish. Similarly for the point B, the torques
of F, and N, vanish, So if we select any one df these two points, we may get rid of the
expressions of torques of a pair of forces whilewriting the condition (9.13b). This
considerably simplifies thefinal condition. However, the meaning of the condition is
independent of the choice of the point about which the torques are being determined.

So, let us now write (9.13b) with reference to the point 5. We have,

ABx F, + AB.x N+ MB X w + GB x W =0
Now, let AB = 21, BM =a and LOBA =0 (Fig. 9.14).'8'0 we get.
2171 sin(90° +0) k + 2N, sin0 k — aw sin(90°- 0)K — W sin(90°—0)k = 0,
Wherelz isthe unit vector perpendicular to the xy - plane and pointing towards you.

or 2/Fy cos @ * 2IN;sin 6 —awcos 6 - [Wcos 6 =0,

N K o

orcote—aw T IW — 20F; - : ) _.‘(9.14b)
Sofor the equilibrium of the system (ladder and man) both the equations(9.14é and 9.14b)
should hold good.

So far we havestudied how to apply therotational analogue of Newton's second law of
motion, In Unit 3 of Block 1 yau have read about "Work and Energy', asapplied to linear
motion. We shall now study about these quantities with referenceto rotational motion of a

rigid body. 71
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9.4.2 Work and Energy in Rotational Motion

In general work done by aforce F during linear motion is given by

W =fF.dr

where dr is an infinitessimal displacement. © is therotational analogue of F. The angular
displacement 8 is the analogue of r. So work done in rotational motion by atorque can be
obtained by replacing F witht and r with 8 in the above expression of W. It is*given by

W, =Jc .d8 (9.152)
For aconstant torque acting in thedirection of theangular displacement, we get
W, = TAD {9.15b)

where A@ istheoverall angular displacement.

Let usnow apply Eg. 9.15b to asimple example.

Example 3
An automobile engine develops 72kW of power when rotating at a rate of 1800 r.p.m. What

torquedoesitdeliver?

Power is therate of doing work. Now if thework W,,; (= TA8) isdonein atime At, then
the power will begiven by

TAO
At

where i—? = o = theangular speed,

or T =

g I~

For thisexample, P = 72x 103W = 72 x 10*kg m?s3
and © =21 X l—gg—orads‘I = 60rn rad s

= 72 X 103 kgm?2s-3
607 rad 5!

= 382 Nm.

You may recall that here Nm is not equivalent to joule.

Let usnow discussthe K E of rotation. We have derived the expression for theK.E. of a '
rotating body in Sec. 9.3. It is given by

Koo == I®, (9.16)

1D [—

where | is the moment of inertia of the body about the axis of rotation and « isits angular
speed. We shall now apply Eq. 9.16 to discuss briefly about the motion of rolling objects.

Rolling Objects

A rolling object exhibits both rotational and trandational motion. As the object moves
forward, it rotates about a point that is itself moving along a straight line. How do we
express the total K E of such a rolling object? The expression must contain both the
trandational and rotational K.E. So the total K.E. is given by

) K = Klran.\' +Kmt

: 1 : 1
Kirans "'—"5 MVC%,, y Koy = Elcmmzv
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where M is the mass of the object. 1.,.,,,isthe speed o the c.m.. |,.,,,is the moment of inertia
of the object about un axis passing through the c.m. and o the angular speed.

| 1
Thus K =5 Mg, +5 1,0,

Now, if the object has a radius Rand it is rolling without slipping, then & = v,,,/R.
Hence for an object which is rolling without slipping,

"_I_ l_‘ﬂ 2
K=5 M+ ) vd (9.17)

Let us apply Eq. 9.17 to work out the following example.

Example 4
A solid cylinder and a solid sphere, each of the same mass M and radius R, start from rest

and roll without slipping down an inclined plane (Fig. 9.15). Which one reaches the bottom
of the inclinefirst?

Let the finishing line be at a vertical distancey below the starting line. The object whose
c.m. finishes with greater speed reachesfirst. Using Eq. 9.17 and applying the principle of
conservation of energy, weget’

Pig. 9.15: Diagram for Example 4

| 1.
Mgy = [M + ﬁ:l Ve
or w2, =—2—‘—VI—~ 9.18)
[ MR?

; ; _1 2 , _4

For the solid cylinder, /., = 5 MR? or v, = 3 &
d for thesolid sphereZ, =2 MR? , _ 10

and for thesolid sphere/,., =3 or v = o gy
Since (10/7) > (4/3), wefind that the sphere reaches first. You may like to work out an SAQ
based on the above concept.
SAQ 8

A spherical bal rolls without slipping down a slope o vertical height 35 cm, and reaches
the bottom moving at 2ms-!. |s the ball hollow or solid'?

-

So far you have studied some applications of the principlesof rotational dynamics. You may
recall from Sec. 4.4.2 of Block 1 that the principle of conservation of angular momentum is
used widely in physics. We have already studied some applications of this principle in Unit 4
of Block 1. The law of equal areaswhich you have read in Unit 6 isalso ¢n application of
this principle. We shall now review the principle of conservation of angular momentum and

study some other of its applications.

9.4.3 Conservation of Angular Momentum and its Applications

Now, you arequite familiar with the relation
T = d—L

dt

Y ou may recall that we have proved thisresult for asingle particle right a the beginning of
Sec. 4.4 of Block 1. For a many-particlesystemt = 3¥1; andL = X L,, wheret;and L,
) i

are the torque experienced and the angular momentum, respectively,of the ith particle. Now,

we know that, v
oL f
=
Again, Z—l; = % (; L)= ); %‘L = >|: 1; = the sum of torques acting on the
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(b)

Fig. 9.16: Mm?on of a figure
skater. (a) The! of the skater islarge
and w issmall (b) ] issmall and w is
large

BK\> %

Bt e e PR W PP N

Fig. 917: Different stagesof the
motion of adiver

Fig. 918 A bicycle wheel
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But we have seen in Sec. 9.4.1 that internal torques cancel in pairs. So the sum of the
torquesisequal to the net external torque.

a _ ., (9.19)

. wheret, isthe net external torque.

. dL
When there is no external torque on asystem, Eq. 9.19 tells us that at = 0, or the angular

momentum is constant. This is the principle of conservation of angular momentum. Jt
implies that the angular momentum of an isolated system cannot change. We shall now
study some apptications of this principle.

Did you notice that while deriving Eq. 9.19, we did not require that the system in question
be a rigid body? So conservation of angular momentum also applies to systems that undergo
changes in configuration, and hence in moment of inertia. A common exampleisthatof a
figure skater, who starts spinning relatively slowly with her arms extended (Fig. 9.16a) and
then pulls her arms in to spin much more rapidly (Fig. 9.16b). Let us find out why this
happens. As her arms movein, her mass gets concentrated more towards the axis of rotation.
In other words in the expression Xm*of |, »'s become small. So| decreases. But the angular
momentum / is conserved. Hence @ increases. The principle also applies to thecase of the
diver in Fig. 7.12. A schematic representation of Fig. 7.12 is shown in Fig. 9.17. At the
positions A, E and F thevalueof | is high and so w is low, whereas at the positions B, C
and D, lislow And o is high. So the diver utilises the principle of conservation of angular
momentum to do somersaults in mid-air and enter the pool with head and hands down.

You may now like to work out an SAQ on the above concept.

SAQ 9
The earth is suddenly condensed so that its radius becomes half o its usual value without its
mass being changed. How will the period of daily rotation change?

& We have studied theapplication of the principle of conservation of angular momentum. We

know that the angular momentum vector changes when an external torqueis applied to the
system. The change in the angular momentum vector when the applied torqueis
perpendicular to thedirection of the angular momentum presentsan interesting situation.
The resulting motionfs called 'precession’ about which we shall study now.

9.4.4 precesson

At sometime you must have played with a top. You must have seen that the axis of
rotation of a spinning top slowly rotatesabout the vertical. This means that the directiod of
L of thetop (which lies along itsaxis of rotation) changes. This must be due to a torque
acting on the top. You can also observe this effect if you carry out the following activity.

Activity

Turn a bicycle upside down and make it stand on its seat and handle. Rotate its ffont wheel.
When the wheel is rotating reasonably fast, lift it upwards by applying force &t the tip of the
axle (Fig. 9.18). What happens if you do this?

' . Indoing this activity you must have seen that when you applied the force, the wheel turned,

i.e. its axisof rotation changed. Why does this happen? To understand this, study Fig. 9.19. .
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(a) (b) — (c)

Pig. 9.19 : a) Axleof thewheel issupported at both engs; b) A rapidly spinning wheel does not fall on
removing the support at P, but exhibits precession; ¢) top view of the precessing whesl.

Fig. 9.19 shows afree wheel with an axle. Initialy the axle is supported a both end points
O and P (Fig. 9.19a). If the support at P isremoved, the torque due to force of gravity mg
causes the wheel to fall. Now suppose you rotate this wheel anticlockwiseand remove the
support at P. What happensin this case? Thistime the wheel does not fall. Instead the axle
remains 'almost horizontal and-begins to revolve about the z-axis (Fig. 9.19b). Why does this

happen?

This happens because the torque due to gravity acts on the wheel and changes its angular
momentum (-.- T©= dL/dt). Since L is along the axis df rotation, the axis of rotation also
turns. We can calculate the angular velocity € at which the axis of rotation moves using tlie

relation T = dL/dt. Let the axisof rotation turn by an angle d¢ during timeinterval dt, then

_db

Q=

Let the angular speed of the wheel () be constant. Then since L = /@, the magnitudeyof L
isconstant and only itsdirection changes. From Fig. 9.19¢ we have

dy=L. g = WL _* (9.20)

L S & La " L-

Thedirection in which the axis of rotation turns will bealong JL., i.e. along the torque's
direction. Now if r be the distance of the point of support to the centre of the wheel then'

T =rX F=(rf\)x (-Mg R):ng(ﬁx f\)=ng./i\‘

Substituting L =lw and t=rMg in Eq.9.20 we get

Q= ™Me. ©.21)
I

Eqg. 9.2t indicatesthat £ increases as « decreases. A s rotationa energy is lost due to
friction, @ will decreaseand the wheel's axis of rotation will change faster.

Sucha motion in which the axis of rotation'changes iscalled precession. § istermed as
the angular velocity of precession, i.e. the velocity at which the axis of rotation

precesses.

SAQ 10
Perform the activity suggested in this section once again In thelight of what we have
discussed in this section attempt the following question giving reasonsfor your answers.

In which direction will the wheel turn when you apply an upward forceat P, if as seen
from P, it were rotating (i) clockwise and (ii) anticlockwise?

b) If you applied upward forces at both P and Q, would the wheel's axis of rotation change?

L et us now summarise what we have studied in this unit. 75
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9.5 SUMMARY

e Arrigid body isonein which the relative separation between any two of itsconstituent
particles always remal ns constant.

o Arrigid body issaid to execute pure trandational motion if each particlein it undergoes
the same displacement as every other particlein any given interval of time.

A rigid body is said to execute rotational motion if each particlein it moves in acircle,
the centres of which lieon astraight line called the axis of rotation.

e Thegeneral motion of arigid body isacombined effect of the tranglation of itsc.m. and
arotation about an axis passing through the c.m.

s Therotational analogue of mass is moment of inertia. It measures the resistance of a
body to changes in rotational motion. It depends on the mass of a body and on the
distribution of mass about the axis of rotation. It is given by

I=Y mrf
|

for a body consisting of discrete masses, and by

I = f r’dm

for acontinuousdistribution of matter.

o Torque isthe rotational analogue,of force. Torque, moment of inertia and angular
acceleration are related by the rotational analogue of Newton's second law

T=lo
a Arigid body issaid to be in mechanical equilibrium if
CF=o0903t=0

a Thework doneduring arotational motion by atorqueis given by

W, =f1 . do

e Theexpression for K Eof rotation is similar to that of K.E. for linear motion with
massreplaced by | and linear speed by angular speed. It isgiven by

1
Kot =§](l)2

e Thetotal K.E. of arolling object may be written as the sum of the trandlational K.E. of
itsc.m. and itsrotational K.E. about an axis'through its ¢.m.
e Theexpressionfor angular momentum of arigid rotating object is given by
L=Jw
e Therotational analogue of Newton's second law may be written in terms of angular
momentum as
dL
T a
e In the absenceof external torques, the angular momentum of asystem is conserved.
e When atorque isapplied perpendicular to the angular momentum vector, then the axis
of rotation exhibits a precessional motion.

9.6 TERMINAL QUESTIONS

1. & Explain with reasons whether the mass of abody can be considered as concentrated
at its c.m. for the purpose of computing its moment of inertia ?

b) Twocircular discs of the samemass and thicknessare made from metals having
different densities. Which disc will have the larger moment of inertiaabout its

76 central axis?




o Comment on the following statement : "' The melting of polar icecaps is a possible
cause of the variation in the time period of rotation of earth."

2. Refer to Fig. 9.20. It shows a satellite of mass 960 kg. Assumethat it is in the form of
asolid cylinder of 1.6m diameter and that the total massis uniformly distributed
throughout its volume. Now, suppose that the satellite is spinning at 10 r.p.m. about
itsaxisand it has to be stopped so that a space shuttle crew can make.necessary repairs.
Two small gas jets are mounted diametrically opposite an the satellite as shown in Fig.
9.20. Thejetsaim tangentially to the surface of the satellite and each of them produces a
thrust of 20N. How long must the jets befired in order to stop the rotation of the
satellite?

3. Therotational energy of the earth isdecreasing steadily becauseof tidal friction.
Estimate the change in the rotational energy of the earth it a day. It isgiven that the
rotational period of the earth decreases by about 10 microsecondsin a year. Assume the
earth to beasolid sphere.

9.7 ANSWERS

SAQs
1. (), ) (e).

2. @ Each hasamagnitude of 4.2cm.
b) 1) A stonefallingfreely under gravity.
ii) The motion of a block on a table when it is given a push.

3. Therequired differential equation (see Eq. 7.22) would be MR =F,, where R is the
position vector of the c.m, of the body and R is its acceleration.

4. InFig. 9.3 thex’, y’z* - axes are dways parallel to the x,y,z - axes, whereasin Fig.
9.7 theformer continually changesits orientation with respect to the latter. In case of
Fig 9.3 the location of the body can be obtained only by locating O, the c.m. of the
body whilein Fig. 9.7 one has to know in addition the orientation of x', y', z =- axes
with respect of thex, y, z - axes.

5. From Sec. 4.3.4 of Block 1 we may say that the K.E. of rotation K of the point mass
myisgiven by

K1 =%m1 1‘12 w?

Similarly the K.E.s of m, and m; are K = %mzr§w2,

Ky = %m3r§ @2 So the K.E. of rotation of the body is given by
K=K\ +K;+Ks+.....
= % (my? +myr? +my? + . )0? = % 1P,
The expression for the K.E. of linear motion is% M2 and since  is analogous tov,

must be the rotational analogue of M.

6. Let the massin kg of each atom be m. Then from Eq. 7.5 we get p =m/2. Here
=1.2 X 10" m. If the required angular speed be w, then from Eq. 9.2 and Example 1,
the rotational K.E. isgiven by

Eg =% [ ’% kg;:I(l.Zx 10719 m P2 .
The tranglational K.E. isgiv'en by

ETZZX% mv2 = my?2, where v = 460 ms~!.

Rigid Body Dynamies

Fig. 9.20 : A spinning satellite
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It isgiven that Ep = 5215.,

m (0.36 X 10020 kgm?) @? = = m (460)2 kgm?s2,

W [b

orm=6.3X10"2rad s

. dL
7. vii) T= dr“m

) KE =3/

x)  Principle of conservation of angular momentum : When the net torque acting on a
body is zero, its angular momentum remains conserved.

e)

xi) Angular impulse = J"l:(t ydt = L (t;) - L (1)),
t

2

R2
3M s

8. For (a) ahollow bdl. /., =

2

and (b) a solid ball, 1,, = £ MR

Now, from Eq. 9.18, we get for (a), (v3,)a =23’y

,, .10
and for (b) (vl =7 8-

For our problemy = 0.35m and we put g =9.8ms-2

So (v2)a =41 m?s2, (v 2)), =4.9 m? 52, The observed value of v 2, = 4m?2s-2 which
.agreesmore closely with (a). Hence the ball isliollow.

9. From the principle of conservation of angular momentum, we get,

5oy =10

2
5

R
Here 1, =SMR2 1, - %MRZZ andR,= —

2

2, R?
M4m1

2
EMR]ZCOI = 5

or 0 =40,

2n

T whereT; and T, are the usual and changed time periods of
2

2r
But @,= T and w, =
1

daily rotation of earth.

b . i _24
(b) o Tp=7p =77 h=6h

So thetime period of daily rotation will become 6h.

Zz
L J 10. @ (i) RefertoFig. 9.21a. Thedirection of L isalong the positive direction of

LT3R 2 JJAL ¥ y-axis. A vertically upward (i.e. along the positive direction of z-axis) force F
' X isapplied at P. The resulting torque (r x F) about © is along the negative

direction of x-axis. So the change AL in the angular momentum vector is
© along that direction (Fig. 9.21b). Accordingly the new direction will bealong
L + AL. So the wheel will swerve so that the axle movesin the xy-plane in

Fig. 9.21: (a) If arotating bicycle

wheel is lifted vertically, it swerves the sense t+ x to +y axis.

totheside; (b) thechangein angular

momentum vector for (i); (c) the (li) Following similar argument asin (i), we can draw the angular momentum
?gagi?e in angular nonent umvector vector L, its change AL, and the resulting vector L + AL as shown in Fig.

9.21c. So the wheel will again swerve in the xy-planein the sense +x to -y
78 axis.



b) If upward forces are applied at both points Pand Q, then the torquesdueto them Rigid Body Dynamics
about O will be equal and opposite. So the resulting torque is zero. Hence there
would be no change in L. So the axis of rotation of the whed will not turn.

Terminal Questions
1. a | =Zm;r? and r; is not samefor dl i. So the mass of a body cannot be considered as

concentrated at its ¢.m. for the purpose of computing its moment of inertia

b) Adiscd thicknesst, radiusR and massM isessentialy aright circular cylinder of
the sameradiusand of lengtht.

But M = nR% p, wherep = thedensity of the meta of which the discis made.

[ TRt [M_T_ M -
2 2 [mpt]l 2mpt

So we see that for same mass and thickness,./ is inversely proportional to p. Hence
the disc made of the meta having lower density will havelarger moment of inertia

c) Whenthe polar icecap melts the weter flows towards the equetor. Thisleadsto a
redistribution of matter over theglobeas aresult of whichl for the earth changes.
But as the angular momentum o the earth remainsconstantits angular speed
changes. But, o = 2r/T, whereT isthe time period of rotation. So T also changes.

2. Thesatellite's angular speed has to changeby A@ = 10r.p.m. If the angular acceleration
aisconstant then the time taken for the changeisgiven by
Aw _ Aol

At =—= (' loa=1)
: T

Since, the satdlliteiscylindrical, | =%MR2, whereM is the mass of the satelliteand R

its radius. The torque isexerted by two jets, each at adistanceR from therotationa axis
and directed perpendicular to the radius (Fig: 9.22) If Fisthethrust of each jet we get,
T =2RF,

Fig. 9.22

1
(AoJ5 MR?
2 _AoMR

2RF  ~ 4F

At =

(960kg) X (0.8m) _
4 X 20N

At =l:&>< 2m rads‘l:l x 108

60
3. The moment of inertiadf the earth about its axis o rotation isgiven by

MR2, whereM =5.97 X 10%*k g, R=6.37 X 10°m.

Z

=5
=97 x 107 kgm?,

Thedaily rotational period of earthisT =24h = 86400s. Now the rotationa K E is

given by

1 - L o 2
Jlot="  (re=7)

N
;.M
P~
[\

Now the relativechangesin E and T are smdl in comparison to E and T themselves. So
we can treat the changes as differentials. 4F and 4T We have,

: ‘ 4m2ldl
dE = 20 (-2T3dT) = =~ » -
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The changein Tin one year (=~ 365 days) is10 X 106, i.e. 1055

. 5
. ThechangeinadayisdT = 1%; =27 X 1078s.

Hence, the changein rotational K.E. Wl be

JE = _ 412 x (9.7 % 1087kgm?) x (2.7 x 10-%5)

(864005)3
=-1.6x107kg ni2s-2

So therotational energy decreases by 1.6 X 107 J per day.
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10.1 INTRODUCTION

In the previous unit you have read about rigid body dynamics.The present unit will be the
final one of our Elementary M echanicscourse. We had introduced the concept of frame o
reference in the very first unit of Block 1. In Unit 2 of Block 1 we introduced theidea of
inertial and non-inertial observers. So far we have explained motion from the point of view
of inertial observers. But as amatter of fact we liveon aframeaf reference (theearth) which
isnon-inertial. Moreover, we shall see that certain problems can be answered quite elegantly
if we take the point of view of a non-inertial observer. So in this unit we shall study the
description of motion relative to a non-inertia frame of reference. Firgt we shdl study what
is meant by a non-inertia frame of reference.

You must have had the following experiences while travellingin a bus Youfall backward
when the bus suddenly accelerates and forward when it decelerates. When the bus takes aturn
you have sensation of an outward force. We shall explain thesefeatures by introducing the
concept of inertial forces. Thereby we shall see how Newton's second law d motion gets
'modified in anon-inertia frame. This will be used to devel op the concept o welghtlessness.

Frames attached with rotating bodies like a merry-go-round, the earth and o on form the
most interesting examplesof non-inertial framesd reference. We shdl derive the equation of
motion of a body in such aframeof reference. Thereby we shall come across two inertial
forces, namely, the centrifugal force and the Coriolisforce. Theformer can be used to
explain theaction of a centrifuge. We will study avariety of applicationsd theseforcesin
connection with the earth as a non-inertia frame o reference. Centrifugal forcefinds

application in studying the variationof ¢ with the latitude of aplace.

Several natura phenoména like erosion of the banks of rivers,cyclonesetc. can be explained
using the concept o Coriolisforce. Finaly we shall study about Foucault's Pendulum
experiment with aview to establishing thefact that the earth rotatesabout an 'axis passing : g

through the poles.




