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9.1 INTRODUCTION 

In the previous unit you have studied the phenomenon of scattering. We had treated the 
projectile there as a point mass. In Units 6 and 7 you have studied about the motion of 
planets around sun by treating them as point masses. As a matter of fact so far in this 

I 

course, we have been concerned primarily with the motion of point masses. In nature, 
however, we hardly come across an ideal point mass. We have to deal with motion of bodies 
which have finite dimensions. So we need to develop a technique for studying the motion of 
sucl~ bodies. 

14 special class of such bodies is known as rigid bodies. In this unit you will first learn what 
a rigid body is. You will see that the definition of a rigid body provides a model for studying 
the mo~ion of various kinds of physical bodies. You will then study about the different kinds 
of motion of a rigid body. A rigid body can execute both translational and rotational motion. 
We shall see that the general motion of a rigid body is a combination of both translation and 
rotation. 

You will find that the translational motion of a rigid body can be described in terms of the 
motion of its centre-of-mass. So, we shall be able to apply the dynamics of point masses for 
description of translational motion. Hence, our chief concern will be the study of dynamics 
of rotational motion of rigid bodies. 

In Unit 4 of Block 1 you have studied the dynamics of rotational motion of ,- particle. You 
already know the concepts of angular displacement, angular velocity, angular acceleration, 
moment of inertia, kinetic energy, torque and angular momentum for a particle. In this unit 
we shall extend these concepts to the case of rigid bodies. This will enable us to study about 
a variety of applications such as the rotation of flywheels, despinning of satellites, motion 
of rolling objects and so on. 

Finally, in this unit we shall revisit the important principle of conservation of angular 
momentum. We shall see that the principle holds for rigid and other extended bodies. We 
shall apply the principle to explain the acrobatics performed by a diver or a bqllerinq Finaflv 
we shall discuss very briefly about precessional motion. 



111 this unit we shall very often refer to the contents of Unit 4 of Block 1. So it is suggested 
that you go through that unit once again before you start this unit. 

In the next unit we shall aim to study the analysis of motion from the point of view of a 
non-inertial observer. 

Objectives 

After studying this unit you should be able to 

e identify a rigid body 

e distinguish between the features of translational and rotational motion of a rigid body 

outline the features of the general motion of a rigid body 

e explain the significance of moment of inertia of a rigid body about a certain axis 

e solve problems based on the concept of rotational dynamics of rigid bodies. - 

Let us consider the motion of a Yo-Yo (Fig.9.1). It runs up and down as the spool winds and 
unwinds. The Yo-Yo rotates about an axis passing through its centre and perpendicular to the 
plane of this paper. You can see that this axis does not remain fixed in space. It moves 
veizically downward or upward with the Yo-Yo. In principle we can use Newton's laws of 
motion to analyse such a motion as each particle of the Yo-Yo obeys them. But obtaining a 
description on a particle-by-particle basis will be an uphill task as the number of particles is 
very large. So we would like to find a simple method for analysing the general motion of an 
extended body like a Yo-Yo. We can find such a method by using the model of a rigid-body. 
So let us first learn what a rigid body is. 

il 

9.2.1 What is a Rigid Body ? 

You must have seen a wheel rotaling about its axle. Let us consider any two points on the 
wheel. We find that the relative separation between them does not change when thc wheel is 
in motion. But if we take the example of the diver of Fig. 7.12 we find that the relative 
separation between two different parts of her body does change. The former is an example of 
a rigid body whereas the latter is not. 

Technically speaking, a rigid body is defined as an aggregate of point masses such that the 
relative separation between any two of these always remains invariant, i.e. for any position 
'of the body rik= a constant (Fig. 9.2). So a rigid body is one which has a definite shape. It 
does not change even when a defornling force is applied. In nature there is no perfectly rigid 
body as all real bodies experience some deformation when forces are exerted. So a perfectly 
rigid body can only be idealised. But we shall see that this model is quite useful in cases 
where such deformations can be ignored. For example, the deformation of a cricket ball as it 
bounces off the ground can be ignored. You know that if a heavy block is dragged along a 
plane, frictional force acts on it (see Sec. 2.2.2 of Block 1). But its deformation due to the 
frictional force can be neglected. However, you cannot neglect the deformation of a railway 
track due to the weight of the train. Likewise, the deformation of the fibre glass pole used by 
a pole-vaulter can also not be neglected. So in the last two cases we cannot apply the rigid 
body model. 

You may now like to identify the objects that can be approximated by the rigid body model. 

SAQ 1 
Which of the following can be considered as rigid bodies ? 

a) A top b) A rubber band c) A bullet d) A balloon e) The earth. 

Let us now study the motion of a rigid body. A rigid body can execute both translational and 
rotational nlotior~. Let us discuss their basic features. 
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Systems or Particles 9.2.2 Translational Motion of a Rigid Body 

Suppose you are travelling in a train. Then during a certain interval of time your 
displacement will be exactly equal to that of your co-passenger provided both of you do not 
move with respect to the train. This will also be true for any two objects attached to the 
body of the train, say a bulb and a switch. This is the characteristic of translational motion. 
A rigid body is said to execute pure translational motion if each particle in it undergoes the 
same displacement as every other particle in any given interval of time. Translational motion 
of a rigid body is shown schematically in Fig. 9.3. 

Fig. 9.3: Transla~ional motion of a rigid body 

You must have noted that the path taken is not necessarily a straight line. Now let us 
measure the magnitudes of the displacements of the points P, 0', Q as the body moves from 
the position A to B. Each is equal to 3.9 cm and the lines joining these positions are parallel 
to each other. So they undergo the same displacement. You may verify the same for the 
motion of the body between positions B and C. 

SAQ 2 
(a) Measure the magnitudes of the displacements of P, 0' and Q between positions B and C 

and verify that they are equal. 

(b) Give two examples of a pure translational motion. , 
Now that you have worked out SAQ 2, you can see that if we are able to describe the motion 
of a single particle in the body, we can describe the motion of the body as a whole. We have , 

done this exercise a number of times before. However, you may like to consolidate your 
understanding by working out the following SAQ. 

SAQ 3 
A rigid body of mass M is executing a translational motion under the influence of an 
external force F,. Suggest a suitable differential equation of motion of the body. 

What does the answer to SAQ 3 signify? We know that the relative separation between any , 
two points of a rigid body does not change, i,e. 

So all the points follow the same trajectory as the c.m. Hence,'for studying translational 
I .. . motion, the body may be treated as a particle of pass M located at its c.m. You may recall 

that we had treated the sun and a planet as particles in Unit 6 .  They were treated as particles 
as their sizes are negligible compared to the distances between them and also because the 
shapes of thesc bodies were insignificant. But here we are considering a rigid body as a 
particle for another reason as explained above. 

Thus we can represent the translational motion of a rigid body as a whole in terms of the 
motion of its c.m. It becomes easier to describe the translational motion in this way. In the 
previous units we have dealt with cases like a body falling down an inclined plane, a cricket 
ball hit by a bat, etc. There we had applied the above idea. So  before we go  over to the next 
sub-section it would be worthwhile to know about the position of c.m. of a rigid body. 



The problem of locating the c.m. of a rigid body is complicated when its shape i, Rigid Body Dynamics 

asymmetrical. However, we shall deal mostly with bodies havini a symmetrical srape. 
Positions of c.m.s (c) of several symmetrical bodies have been shown in Fig. 9.4. ~. 

Fig. 9.4: Centres-of-mass of symmetrical rigid bodies 

Let us now discuss the rotational motion of a rigid body. 

9.2.3 Rotational Motion of a Rigid Body. 

Let us consider the motion of the earth. Every point on it moves in a circle (the 
corresponding latitude), the centres of which lie on the polar axis. Such a motion is an 
example of a rotational motion. A rigid body is said to execute rotational motion if all the Fig. 9.5: An example of  rotational 

;articles in it move in circles, the centres of which lie on a straight line called the axis of motion o f  a rigid body. 

rotation. Fig. 9.5 shows the rotational rnotioil of a rigid body about the z-axis. When a rigid 
body rotates about an axis every particle in  it remains at a fixed distance from the axis. So 
each point in the body, such as P, desaribes a circle about this axis. You must have realised 
that perpendiculars drawn from any point in the body to the axis will sweep through the 
same angle as any other such line in any given interval of time. 

'C 

We shdl now study about the general motion of a rigid body. 

9.2~4 General Motion of a Rigid Body 

Thegeneral motion of a rigid body is a combinatio$,of translation and rotation. This can be 
understood by considering a simple example show'tl in Fig. 9.6. 

M 

Fig. 9,6: To bnng the body from position A to some new position B ,  first translate it so that the centre-of-mass 
coincides with the new centre-of-mass. and then mtate it mund the appropriate axis through the centre- 

. of-mass until the body is in the desired position. 

You may now perform an activity for the sake of better understanding of the general motion 
of a rigid body. 

Act iv i ty  --- 
Take any book lying ~ n , ~ o u r t a b l ~  and keep it in the bookshelf in its erect posture. 

Here you first shift the c.m. of the book to a new position, Then you turn the book about a 
sitable axis throughthe c.m, to make it stand erect on the shelf. So you can see that the 
,hd c motion of the book is-a-combination of translation and rotation. Now, study the 
soll&ing figure carefully. .- 63 



$ >.terns of Particles 

Fig. 9.7: A rigid body moving in combined translational and mtationa1 motion as seen from reference frame 
(x, y,  2). Notice that the reference frame fixed on the body (x', y:  2 3  changes its orientation with respect 

to (x, y, z) as the motion proceeds. 

Fig. 9.7 shows a case of combined translational and rotational motion of a rigid body. It can 
b~ considered as a schematic extension of Fig. 7.12. Study Fig. 9.7 and work out the 
following SAQ. 

/' 

SAQ 4 
Compare Figs. 9.3 and 9.7. Mention very briefly the distinctive features in respect of the 

,observer's reference axes (x, y, z) and the body-fixed axes (x', y', 2'). . 
Now that you have worked out ShQ 4 you can realise that determining-the location 0' in 
Fig. 9.7 is the good old problem of the motion of c.m. which we have studied in detail. As 
stated earlier our chief concern in this unit is to suitably study the rotational aspect. For this 
we have to develop a formalism to analyse rotational motion of a rigid body. Now, in Unit 4 
of Block 1, you have already studied the dynamics of angular motibn of a particle. We shall 
only make an extension of that study here. 

Recall from Sec. 4.3.3 of Block 1 that a particle executing rotational motion possesses a 
moment of inertia (denoted by I). For rotational motion I plays the same role as the mass of 
the particle plays for translational motion. It is very important to understand the meaning of 
moment of inertia of a rigid body for ip  rotational motion. So let us now learn about the 
'moment of inertia' of a rigid body. We shall start by determining the angular momentum of 
a rotating rigid body about the axis o f  rotation. 

9.3 MOMENT OF INERTIA 

Fig. 9.8: A rigid body rotating 
about an axis AB. 

We know that the earth rotates about the line joining the poles which passes through the 
centre of earth. How can we calculate its angular momentum about the axis of rotation? We 
know that when the earth rotates about its axis, every point on it executes a uniform circular 
motion about this axis. The radius of this circle decreases with the latitude of the point. The 
circle along which New Delhi moves has a smaller radius than that along which Trivandrum 
moves. So the linear velocity of each point is in general different. In order to determine the 
angular momentum of a body we shall first have to determine the angular momentum of 
each particle in it. And as angular momentum is a vector quantity we shall add vectorially 
the individual angular momenta to get the angular momentum of the body. Let us now 
consider a general situation. 

Refer to Fig. 9.8. A rigid body is rotating about ari axis AB fixed in an inertial frame with a 
uniform angular speed a. Three point masses m,, m2, m3 at distances r , ,  r2, r3. respectively,, 
from AB have been shown. ml moves along a circle of radius rl and let its velocity be v, . 
Using Eq. 4.23 of Unit 4, Block 1, we may say that the angular momentum L1, of m, is 
given by 



I Now the mass m, is rotating along a circle of radius r, whose plane is perpendic~~lar to AB. 

1 In fact every point mass is moving along a circle whose plane is perpendicular to AL?. Using 
Eq. 4.13a of Unit 4, Block 1, we get 

A A A 
whex r l  is the unit vector along r,  and 0, is perpendicular to r l  in the sense of increasing 

A A ' angle 8, . You may recall that the directions of r l  and O1 change with time. Again 

d l  = w, which is same for all the point masses. So we get, 
1 

I 
I A A A A 

i Now, r ,  X r ,  = 0 and r,  X 0, =A, where 2 is the unit vector along BA (See SAQ 3c 

I of Unit 4 of Block 1). 

Similarly L2 = m2 r22 o, L3 = m ~  r32 [U and so on. 

So the angular momentum of the body is given by 

Rigid Body 1)vnatn; 

As stared in Sec. 9.2.3 rhr gelleral 
motion of a rigid body i.:\rI bc 
considered as a trdnslatic~l.~al i'i~otiul~ 
of its c . n ~  and a roti~tional mollon 
about its c.m. Hence, the 
considcr~tions of this unit apply also 
to rotations about an axis that is ~ o 1  

fixed in an inertial frame, provided 
the axis passes through the c:m, and 
the moving axis always has the same 
direction in space. 

In situations irivolving asymmetric 
'<vllerr I = Emi r; (9.3) ohjects, L ar~d O ]nay he in dit'l'er;.'~:l 

i dircctians. In thal cdse 1 ca~~:!ci I!!. 

ir; ca11cc.l the moment of inertia of the body about the given axis of rotation. Iltre the expresqwd as a single nu.:~ijer h!rl ill :I 

more co~nl~licatcd matlrcin~!tli.ai i c i r ~ ; ~  si~rn~r,:irinn extends over all thc point masses that constitute the body. The SI unit of called tensor. 
nlotn:r.n: tit inertia is kg!,l2, 

li' the mass ijf ihc boay be M then we can express I us I = Mk2, (9.4) 

where k is a quantity having the dimension of length. This quantity is cdl!ed the r-~rdrrrs ;?I' 
gyration. If we crjrilpare Eq. 9.4 with Eq. 4.21 b of Unit 4, we find  ha^ k i s  eqiiivaleni :-r !I!; 
distance from rhc a:.tis of rotation of the point where the entire mass of tile body ,::it i!t. 

cnnsicicrcd to he co~lr:enl!.a[ed. In other words it is the distancc hct\:'~i.ir ti12 :!xi:; 01: r.o:.,.~ri:b!: 
;mil ti;:: c.m. nit the body. 

[)id you ~lotict. tile similari~y betweeii the expression ( ( ) , ? ' I  :il:l t!,-f .2 :1~1:  j;>r I~III-::T 

rnomen[uiti (i.e. Mv). Si~ice  o is analogo~~s to v (sue Trhi ! . I ), I :lil!st be analogous I .: 

M. In other words, I is the rota~ional analogue of mass aboiti :,i il.;ck ~ . a u  have read in 
Sec. 4.3,3. This analogy also becomes evident from the t.~l1re.;>.i.j~1 c>l'i(..Fi. of rotation h 
which you may work out in the following SAQ. 

SAQ 5 
Show that for the body in Fig. 9.8 the K.E. of rotation is given by 

1 K = - - J &  . 
2 (9.5) 

Compare the expression for K with that of K.E. of linear motion and find the rotational , 

analogue of mass. . I, I I \ 

So far in this section we have considered a case where the axis of rotstion lies within the B - 4A 
body. The above analysis also hol(1s if the axis lies outside the body; e.g. the bob of a Fig. 9.9: B is the boh or a coni~..: 
conical pendulum (Fig. 9.9). pendulum and OA, the axis 11i  

rotation. 
Now that you have understood the meaning of the term 'moment of inertia' we may proceed 
to study the method for its determination. f i S  



Systems of Particles 9.3.1 Determination of Moment of Inertia of a Rigid Body 

We shall now put Eq. 9.3 to use. To start with let us  try to determine the moment of inertia 
of a dumb-bell (Fig. 9.1 Oa). We shall assume that the thin rod joining the masses m, and m2 
is of negligible mass. We shall also consider ml and m2 as point masses. These assumptions 
may appear oversimplifying. But this model finds many applications in molecular 
spectroscopy as this can represent a diatomic molecule. Let us first work out the following 
example related to the determination of moment of inertia of the dumb-bell. Then we shall 
study an application of this model. 

Example 1 
Refer to Fig.9. lob. AB is perpendicular to the line joining the masses ml and m2 and it 
passes through C ,  the c.m. using the assumptions stated above show that the moment of 
inertia of the system described in Fig. 9.10b is pr2 , where p is the reduced mass of the 
system and r is the distance between the masses. 

For the given system the summation of Eq. 9.3 will have two terms. i.e. 

Since C i s  the c.m. we have ml rl = m2r2 

or f ' - % =  - 'I ' r2 (by addendo) 
m2 ml mz + m 1 

I 
rt I ~2 Hence, using Eq: 7.6 we get, 

0 
m t ic 2 2  I = $ .  

I 
I B 

U a- 

You may now like to study an application of Example 2 by working out the following 

(b) SAQ. 

Rig. 9.10: (a) A dumb-bell having . SAQ 6 
nasses ml and n'2 at its ends: (b) the The atoms in the oxygen molecule (02) may he considered to be point masses separated by a 
letemination of moment of inertii' of , 
he dumb-bell in (a) about an axis distance of 1.2"A. The molecular speed of an oxygen molecule at s.t.p. is 460m s-I. It is 
,assing through the c.m. of m, and known that the rotational K.E. of the molecule is 2/3 of its translational K.E. Calculate its 
n2 and perpendicular to the line angular velocity at s.t.p. assuming that molecular rotation takes place about an axis through 
oining them. the c.m. of, and perpendicular to the line joining the atoms. 

We have just now applied Eq. 9.3 to determine the moment of inertia of a system made up 
of discrete particles. In each of the systems (dumb-bell and diatomic molecule) the total mass 
is distributed among particles which are not attached to one another, i.e. the particles that 
comprise the system can be enumerated. We shall now take up the case of systems where 
there is a continuous distribution of matter. Here the particles cannot be enumerated. For 
example, we have bodies like a uniform rod, a sphere, a cylinder and so on. For that we shall 
modify Eq. 9.3 in the following manner. 

Let r- be the perpendicular distance of an infinitesimal mass dm of the body from the axis. 
Then from Eq. 9.3, we get 

where Am gets replaced by dm, the differential of mass and the sutnmation by integral. TIie 
integral is a definite one extending over the entire body. Using Eq. 9.6 the moments of 
inertia of symmetrical bodies about certain axes can be determined. 

The moments of inertia about certain axes of a few common symmetrical bodies have k e n  
given in Table 9.1 ( In all cases M represents &e mass of the body in the diagram). We 

66 have derived these results in Appendix B. 



Table 9.1 

axis through one 

Rectangular plate 
about axis through 

Thin spherical shell 

S o  you have understood the meaning of the term 'moment of inertia'. You have also come 
to know the value of moments of inertia of several bodies about certain axes. So we may 

I 

proceed to study the dynamics of rotational motion. 

1 

9.4 ROTATIONAL DYNAMICS OF A RIGID BODY 

, You know that dynamics is the study of accelerated motion and its causes. For translational 
motion it is governed by Newton's second law, i.e. 

The rotational analogue of Newton's second law of motion, as you know (see Eq. 4.24 of 
Unit  4, Block 1) is given by 

where 'F is the torque acting on the particle and L its angular momentum and I the moment 
of inertia about the axis of rotation. You may recall that you have studied the dynamics of 
angular motion of a particle in Sec. 4.3 of Block 1. We shall now.apply the concepts you 
have studied in Unit 4 of Block 1 mostb to a rigid body. You have studied the necessary 

, principles and laws there. We shall now list them in the Table 9.2. Here we have shown the 

Rigid Body Dynamic5 



Systems of Particles equivalent aspects of translational and rotational motion. A few spaces have been left blank 
which you may f i l l  in. 

Table 9.2 

1 S.No. 

I iii) I dv d2r 
Acceleration, a = - = 7 

d l  dl  

Translational Motion I Rotational Motion 

i) 

ii) 

I dm & 

I Angular acceleration. a = - dl  = 2' I 
iv) Mass, m Moment of inertia, I 

I I 

Position, r 

velocity, v = 
dl 

I V) 1 Linear momentum, p = mv 1 Angular momentum. L = la, 1 

Angular position, 0 

Angular velocity o = - 

1 vii) I Newton's second law ) Analogue of second law I 
vi) 

I Work done = J .r.& I 

I I 

Force, P 

I 

XI) Impulse Angular I~npulsc 

Torque, T 

x) 

SAQ 7 
Fill in the blank spaces of Table 9.2. 

, 
Now that you have studied Table 9.2 and worked out SAQ 7. we can discuss some 
applications of the principles of rotational dynamics. We shall stan with the rotational 
~nalogue of Newton's second law. 

9.4.1 Ratational Analogue of Newton's Second Law 

Principle of conservation of linear 
momentum: 
When the net external force acting on 
a body is zero the linear momentum 
of its c.m. remains constant. 

We have used the equation F =@ to describe the dynamics of linear motion of a body. For a 
dl 

system having constant mass this equation becomes F = ma. To study the rotational 
dynamics of a body we first need to know its moment of inertia I about the axis of relation. 
Then we shall use the rotational analogue of the above equation, i.e. 

.......................................... 
.......................................... 
.......................................... 

d 
Now, we  know from Eq. 0.2 that, L = loo. .: z = - ( I r u ) .  

dr 

Fur a ,.ysirm having constant I. we get 

* do T = I --=la 
L i t  

(9.7) . 

Z in Eq, 9.7 is the net torque acting on the body. So we must take care to detem11r:e all 
~~~ILII~:'? !hat act on the body and take their vector sum to obtain the net torque. 



1 We have studied about the linear motion of a many-particle system in Sec. 7.3. There we Rigid Body Dynamics 

I found that only external forces matter. The internal forces cancel in pairs according to 

/ Newton's third law. Now, let us see what happens in the case of internal torques. Refer to 
I Fig. 9.1 1. It shows two particles 1 and 2 of a rigid body. The internal force on 1 due to 2 is 
I 
I 

FZI and that on 2 due to 1 is FI2. Let us find out the total internal torque about a point 0 
I 
I 

due to these forces.You may recall from Eq. 1.16 of Block 1 that this total internal torque is 
given by, 

I s in! = rl x Fzl + r2 xF12  
I 
/ Now, r, x F2, = r,  F2, sin (n - 8,) k = F21 r ,  sin 8, 
I 

Fig. 9.11: Internal forces on two 
particles of a rigid body. 

where i is the udit vector perpendicular to the plane of this page and pointing towards you. 
And, 

r2 x FI2 = r2 F12 sin (n- €I2) (- i )  =-FI2r2 sin O2 k 

.-. fin, = (F21 r1 sin 8, - F12 r2 sin €I2) i. (9.8) 

We know from Newton's third law that F12 and F2, are equa1,and opposite. So F12 = F2,. 
Again, we can see from Fig. 9.11 that, 

rl sin €I1 = r2 sin €I2 =ON, 
\ 

where ON is the length of the perpendicular drawn from 0 on the line joining the points 1 
and 2. Hence, from Eq. 9.8, we get 

So we see that internal torques cancel in pairs. Thus, the torque in Eq. 9.7 is the net external 
torque. 

Let us now work out an example to illustrate Eq. 9.7. You will find that the situation is 
analogous to the case of accelerated linear motion as the applied torque $d the angular 
velocity of the rotating body are in the same direction. 

Example 2 
A solid cylinder of mass M is mounted on a horizontal axle over a well (Fig. 9.12a). A rope 
is wrapped around the cylinder and a bucket of mass m is suspended from the rope. Find in 
terms of m, M and g an expression for the acceleration of the bucket as it falls down. 
Neglect the mass of the rope and any friction between the axle and the cylinder. Assume that 
the rope does not slip over the cylinder as it unwinds. 

If the bucket were not connected to the cylinder it would have accelerated downward at the 
rate g. But now there is an upward tension T on the bucket due to the rope. It reduces the 
net downward force on the bucket. It also exerts a torque on the cylinder, The magnitude of 
the downward force on the bucket (Fig. 9.12b) is given by 

But F = ma, where a is the linear acceleration of the bucket. 

If we take the end view of the cylinder (Fig 9.12c), we see that the rope exerts a torque of 
magnitude z( = RT) on the cylinder. This gives rise to an angular acceleration a given by 
Eq. 9.7 as 

where I is the moment of inertia of the cylinder about the axis. 

Since the rope unwinds without slipping, a is related to a. Using Eq. 4.1 la of Block 1 we 
get from Eq. 9.10 that, 

Pig. 9.12: Diagram for Example 2 
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a m 2 ,  
Fig. 9.13: The falling mass m2 
can provide horizontal acceleration to 
"1. 

Hence, from Eqs. 9.9 and 9.1 1 we get 

1 
We know from result (h) of Table 9.1 that for the cylinder I = - MR2. So, we can rewrite 2 
Eq. 9.12a as 

Eq. 9.1 2b indicates that if M << m, then a = g. In other words if the mass of the cylinder 
is very small compared to that of the bucket then the rotation of the cylinder does not matter. 
The acceleration of the bucket is simply equal to g. 

However, in general we can say that the gravitational force on the bucket does not only 
provide its linear acceleration, it also gives rise to the angular acceleration of the cylinder. As 
a result, the linear acceleration of the bucket-decreases. A falling mass can provide horizontal 
acceleration to another mass (Fig. 9.13). From Example 2, we have just now seen that a 
falling mass can also generate angular acceleration in another body. 

So we have learnt to apply the rotational analogue of Newton's second law of motion. This 
study throws some light on the concept of equilibrium of a body. You may recall that we 
have studied about equilibrium of forces in Sec 2.2.2. of Block 1. A body had been said to be 
in equ~librium if the vector sum of all the forces acting on it is zero.   his is equivalent to 
saying that the linear acceleration of the c.m. of the body is zero. But we know that the 
general motion of a rigid body is a combination of the translational motion of the c.m, and a 
rotational motion about an axis passing through the c.m. So we can say that our study in 
Sec. 2.2.2 of Block 1 was restricted to the case of translational equilibrium only. The general 
condition of equilibrium of a body must include therotational aspect too. We shall study 
briefly about this now. 

Equilibrium of a Rigid Body I 

A rigid body is said to be in mechanical equilibrium if with respect to an inertial frame 
(i) the linear acceleration a,, of its c.m. is zero and (ii) its angular acceleration a about any 1 

axis fixed in this frame is zero. 

The above conditions do not imply that the body must be at rest with respect to the frame. It 
should only be unaccelerated. Its c.m., for example, may be moving with a constant velocity 
v, and the body may be'rotating about a fixed axis with a constant angular velocity. 

The translational motion of the body, as you know is governed by the equation 

F, = M a,,, , 

where F,is the net external force acting on the body of mass M. So condition (i) may be 
expressed as  follows : The vector' sum,of all the external forces acting on the 
body is zero. In other words, if afigid body is in translational equilibrium undei the 
action of several external forces F,,  F,, F,, and so on, we may write the above condition as - 

F , + F ? + F , +  ,.... = a .  (9.13;) 

The other condition is given by a = 0 for any axis. We know that the angular acceleration 
of a rigid body is related to the net external torque T as 

'I: = l a ,  



where I is the moment of inertia of the body about the axis of rotation. So condition (ii) Rigid Body Dynamics 

may be~-expressed as follows : The vector sum of all the wternal torques acting 
on tfie b o d y  is zero. In other words if a rigid body is in rotational equilibrium under the 
action of several torques T,, 22, T~ and so on we may express this condition as 

Hence, a rigid body is said to be in mechanical equilibrium if both the conditions 9.13 a and 
b hold. 

Let us take the example of a man standing an a ladder (Fig. 9.14). Suppose that the entire 
system is in equilibrium when the man is at the point M of the ladder AB. We shall first 
find out what are the forces acting on the system. The weight of the man acting vertically 
downwards through M is w. The weight W of the ladder acts vertically downward through 
its mid point G . N1 and N2 are the normal reactions at the points of contact A and B of the 
ladder with the vertical and horizontal surfaces, respectively. Since the point A has a 
tendency to slip towards 0, the force of friction F1 atA acts along OA. Again B has a 

2 
tendency to slip along OB. So the force of frictian F2at B is along BO. So condition (9.13a) 
demands that W 

w + W +  N l  + N 2 + F 1  + F 2 = 0 .  Fig. 9.14: A ladder in equilibrium 

Now let us define the Cartesian x and y-axes along OB and OA, respectively. Then the 
above condition may be written as 

Hence, we get 

i.e. NI = F ,  and N2 + F 1  = w + W .  (9.14a) 

Now, we shall take care of the condition (9.13b). For this we have to determine the total 
torque acting on the system about any point. The choice of this point is quite important. A ' 
proper choice helps us in getting the final condition in a simple form. Let us see how. If we 
select the point A, the torques of F, and N1 vanish. Similarly for the point B, the torques 
of Fz and NZvanish, So if we select any one of these two points, we may get rid of the 
expressions of torques of a pair of forces while writing the condition (9.13b). This 
considerably simplifies the final condition. However, the meaning of the condition is 
independent of the choice of the point about which the torques are being determined. 

So, let us now write (9.13b) with reference to the point B. We have, 

. . 
Now, let AB = 21, BM = a and LOBA = 0 (Fig. 9.14). So we get. 

A A 
21 F I  sin(90° + 0) C + 21N1 sin0 k -,nw sin(90° - 0) k - IW sin(90°- 0) k = 0. 

A 
where k is the unit vector perpendicular to the xy - plane and pointing towards you. 

or 21F1 cos 0 + 21N1 sin 9 - awcos 0 - lWcos 0 = 0, 

S o  for the equilibrium of the system (ladder and man) both the equations (9.14a and 9.14b) 
should hold good. 

So far we have studied how yo apply the rotational analogue of Newton's second law of 
motion, In Unit 3 of Block 1 yau have read about 'Work and Energy', as applied to linear 
motion. We shall now study about these quantities with reference to rotational motion of a 
rigid body. 71 



9.4.2 Work and Energy in Rotational Motion 

In general work done by a force F during linear motion is given by 

where dr is an infinitesimal displacement. T is the rotational analogue of F. The angular 
displacement 9 is the analogue of r. SO work done in rotational motion ~y a torque can be 
obtained by replacing F with z and r with 8 in the above expression of W. It is'given by 

Wro, = z . d e  S (9.15a) 

For a constant torque acting in the direction of the angular displacement, we get 

where A9 is the overall angular displacement. 

Let us now apply Eq. 9.15b to a simple example. 

Example 3 
An automobile engine develops 72kW of power when rotating at a rate of 1800 r.p.m. What 
torque does it deliver? 

Power is the rate of doing work. Now if the work W,,, (= TAB) is done in a time At, then 
the power will be given by 

At3 
where - = o = the angular speed, 

At 

For this example, P = 72 x 1 O3 W = 72 x 103 kg m2 s-3 

and o = 25c x -- I 800 rad s-I = 6 h  rad s-I 
60 

72 x l o 3  k g m 2  s - ~  :. T = = 382 Nm. 
60n rad s-I 

You may recall that here Nm is not equivalent to joule. 
,& 

Let us now discuss the K.E. of rotation. We have derived the expression for the K.E. of a 
rotating body in Sec. 9.3. It is given by 

where I is the moment of inertia of the body about the axis of rotation and w is its angular 
sped .  We shall now apply Eq. 9.16 to discuss briefly about the motion of rolling objects. 

Rolling Objects 
A rolling object exhibits both rotational and translational motion. As the object moves 
forward, it rotates about a point that is itself moving along a straight line. How do we 
express the total K.E. of such a rolling object? The expression must contain both the 
translational and rotational K.E. So the total K.E. is given by 



wlicrc M is thc mass ol' thc object. I.,.,,, is the hpeed of the c.ni.. I,.,,,. is the moment of inertia 
of thc tiQiect about an axis passing through the c.m. and w the angular speed. 

I 1 
Thus: K = 3 MI!,:,, + 5 1 ,.,,, a2. - - 

Now, if the object has a radius R and it is rolling without slipping, then o = I;.,,,/R. 
Hence for an object which is rolling without slipping, 

Let us apply Eq. 9.17 to work out the following example. 

Example 4 
A solid cylinder and a solid sphere, each of the same niass M and radius R, start from rest 
and roll without slipping down an inclined plane (Fig. 9.15). Whicli one reaches the bottom 
of the incline first? 

Let the finishing line be at a vertical distance y below the starting line. The object whose 
c.m. finishes with greater speed reaches first. Using Eq. 9.17 and applying the principle of 
conservation of energy, we get ' 

1 4 
For the solid cylinder, I,.,, = - MR2 01. I.,$ = - ,qy 

2 3 

2 10 
and for the solid sphere I,.,, = - MR' or IS,;,, = 7 ,yy.  5 

Since (10/7) > (413). we find that the sphere reaches first. You may like to work out an SAQ 
based on the above concept. 

SAQ 8 
A spherical ball rolls without slipping down a slope of vertical height 35 cm, and reaches 
the bottom moving at 2ms-I. Is the ball hollow or solid'? 

\ 

S o  far you have studied some applications of the principles of rotational dynamics. You may 
recall from Sec. 4.4.2 of Block 1 that the principle of conservation of' angular momentum is 
used widely in physics. We have already studied sonie applications of this principle in  Unit 4 
of Block 1. The law of equal areas which you have read in Unit 6 is also an application of 
this principle. We shall now review the principle of conservation of angular momeliturn and 
study some other of its applications. 

9.4.3 Conservation of Angular Momentum and its Applications 

Now, you are quite familiar with the relation 

You may recall that we have proved this result for a single particle right at the beginning of 
Sec. 4.4 of Block 1. For a many-particle system z = Czi and L = C L, , where zi and L, 

i i 
are the torque experienced and the angular momentum, iespectively,of the ith particle. Now, 
we know that, 

dL d 
Again, - - - dL 

(& Li ) = & 2 = Ti = the sum of torques acting on the dt - dt I i 

particles. 

Itigid Hody I)ynnmir+ 

Pig. 9.15: Diagram for Example 4 



Systems of Particles But we have seen in Sec. 9.4.1 that internal torques cancel in pairs. So the sum of the 
torques is equal to the net external torque. 

. where 2, is the net external torque. 

(a) . dL 
When there is no external torque on a system, Eq. 9.19 tells us that - = 0, or the angular dt  
momentum is constant. This is the principle of conservation of angular momentum. It 
implies that the angular momentum of an isolated system cannot change. We shall now 
study some appIications of this principle. 

\ I 1' Did you notice that while deriving Eq. 9.19, we did not require that the system in question 
be a rigid body? So conservation of angular momentum also applies to systems that undergo 
changes in configuration, and hence in moment of inertia. A cornmoll example is that of a 
figure skater, who starts spinning relatively slowly with her arms extended (Fig. 9.16a) and 
then pulls her arms in to spin much more rapidly (Fig. 9.16b). Let us rind out why this 
happens. As her arms move in, her mass gets concentrated more towards the axis of rotation. 

( b )  In other words in the expression Znz~.'of I, r's become small. So I decreases. But the angular 
e momentum Iw is conserved. Hence o increases. The principle also applies to the case of the 

Fig. 9.16: of a figure diver in Fig. 7.12. A schematic representation of Fig. 7.12 is shown in Fig. 9.17. At the 
skater. (a) The 1 of the skater is large 
and w is srnall (b) 1 is small and o is positiolls A ,  E and F the value of I is high and so w is low, whereas at the positions B, C 

large and D, I is low And o is high. So the diver utilises the principle of conservation of angular 

\c momentum to do somersaults in mid-air and enter the pool with head and hands down. 

P" y You may now like to work out an SAQ on the above concept. 

61 SAQ 9 ' I  \ , The earth is suddenly condensed so that its radius becomes half of its usual value without its 
mass be~ng changed. How will the period of daily rotation change ? 

I 

# We have studied the application of the principle of conservation of angular momentum. We _____i know that the angular momentum vector changes when an external torque is applied to the 
system. The change in the angular momentum vector when the applied torque is 
perpendicular to the direction of the angular momentum presents an interesting situation. 

Fig. 9.17: Different stages of the 
motion of a diver The resulting motionfs called 'precession' about which we shall study now. 

9.4.4 precession 

At some time you must have played with a top. You must have seen that the axis of 
rotation of a spinning top slowly rotates about the vertical. This means that the directiod of 
L of the top (which lies along its axis of rotation) changes. This must be due to a torque 
acting on the top. You can also observe this effect if you carry out the following activity. 

A c t i v i t y  

I 

I 
Turn a bicycle upside down and make it stand on its seat and handle. Rotate its ffont wheel. 
y h e n  the wheel is rotating reasonably fast, lift it upwards by applying force at the tip of the 

1 axle (Fig. 9.18). What happens if you do this? 
Fig. 9.18: A bicycle wheel 

In doing this activity you must have seen that when you applied the force, the wheel turned, 
i.e. its axis of rotation changed. Why does this happen? To understand this, study Fig. 9.19.' . 



Rigid Body Dynamics 

Pig. 9.19 : a) Axle of the wheel is supported at both ends; b) A rapidly spinning wheel does not fall on - ,' 
removing the support at P, but exhibits precession; c) top view of the precessing wheel. 

Fig. 9.19 shows a free wheel with an axle. Initially the axle is supported at both end points 
0 and P (Fig. 9.19a). If the support at P is removed, the torque due to force of gravity m g  
causes the wheel to fall. Now suppose you rotate this wheel anticlockwise and remove the 
support at P. What happens in this case? This Fime the wheel does not fall. Instead the axle 
remains 'almost horizontal and-begins to revolve about the z-axis (Fig. 9.19b).Why does this 
happen? 

This happens because the torque due to gravity acts on the wheel and changes its angular 
momentum (a: z = dL/dt). Since L is along the axis of rotation, the axis of rotation also 
turns. W e  can calculate the angular velocity a at which the axis of rotation moves using tlie 
relation 'c = dL/dt. Let the axis of rotation turn by an angle d$ during time interval dt, then 

Let the angular speed of the wheel (w ) be constant. Then since L = Iw, the magnitudqof L 
is constant and only its direction changes. From Fig. 9 . 1 9 ~  we have 

The direction in which the axis of rotation turns will be along rlL, i.e. along the torque's 
direction. Now if r be the distance of the point of support to the centre of the wheel then' 

0 A 0 A 
'c = r X  F = ( r l ) x  (-Mg k) = , - M ~ ( C X  I ) = r M g j .  

Substituting L = I  w and z = rMg in Eq. 9.20 we get 

Eq. 9.21 indicates that i2 increases as w decrepes. As rotational energy is lost'due to 
friction, o will decrease and the wheel's axis of rotation will change faster. 

Such a motion in which the axis of rotation'changes is called precessiorz, 0 is termed as 
the  angular velocity of precession, i.e. the velocity at which the axis of rotation 
precesses. 

SAQ 10 
Perfom the activity suggested in this section once again In the light of what we have 
discuksed in this section attempt the folloiving question giving reasons for your answers. 

a) In which direction will the wheel turn when you apply an upward force at P, if as seen 
from P, it were rotating (i) clockwise and (ii) anticlockwise? 

b) If you applied upward forces at both P and Q, would the wheel's axis of rotation change? 

Let us now summarise what we have studied in this unit. 



Systems of Pafticles 
SUMMARY 

a In the absence of external torques, the angular momentum of a system is conserved. 

a When a torque is applied perpendicular to the angular momentum vector, then the axis 
of rotation exhibits a precessional motion. 

a A rigid body is one in which the relative separation between any two of its constituent 
particles always remains constant. 

b 

A rigid body is said to execute pure translational motion if each particle in it undergoes 
the same displacement as every other particle in any given interval of time. 

A rigid body is said to execute rotational motion if each particle in it moves in a circle, 
the centres of which lie on a straight line called the axis of rotation. 

e The general motion of a rigid body is a combined effect of the translation of its cam. and 
a rotation about an axis passing through the c.m. 

a The rotational analogue of mass is moment of inertia. It measures the resistance of a 
body to changes in rotational motion. It depends on the mass of a body and on the 
distribution of mass about the axis of rotation. It is given by 

I = mi ri2 
I 

for a body consisting of discrete masses, and by 

for a continuous distribution of matter. 

a Torque is the rotational analogue, of force. Torque, moment of inertia and angular 
acceleration are related by the rotational analogue of Newton's second law 

a A rigid body is said to be in mechanical equilibrium if 

CF = 0, Cz = 0 

a The work done during a rotational motion by a torque is given by 

a The expression for K.E. of rotation is similar to that of K.E. for linear motion with 
mass replaced by I and linear speed by angular speed. It is given by 

4 

e The total K.E. o'f a rolling object may be written as the sum of the translational K.E. of 
I its c.m. and its rotatiolial K.E. about an axisThrough its c.m. 

a The expression for angular momentum of a rigid rotating object is given by 

L = Iw 

a The rotational analogue of Newton's second law may be written in terms of angular 
momentum as 

9.6 TERMINAL QUESTIONS 

1. a) Explain with reasons whether the mass of a body can be considered as concentrated 
at its c.m. for the purpose of computing its moment of inertia ? 

b) Two circular discs of the same mass and thickness are made from metals having 
different densities. Which disc will have the larger moment of inertia about its 
central axis ? 



C) Comment on the following statement : "The melting of polar icecaps is a possible Rigid Body ~ ~ n a r n i e ;  

cause of the variation in the time period of rotation of earth." 

2. Refer to Fig. 9.20. It shows a satellite of mass 960 kg. Assume that it is in the form of 
a solid cylinder of 1.6m diameter and that the total mass is uniformly distributed 
throughout its volume. Now, suppose that the satellite is spinning at 10 r.p.m. about 
its axis and it has to be stopped so that a space shuttle crew can makeqecessary repairs. 
Two small gas jets are mounted diametrically opposite on the satellite as shown in Fig. - 
9.20. The jets aim tangentially to the surface of the satellite and each of them produces a 
thrust of 20N. How long must the jets be fired in order to stop the rotation of the 
satellite? 

3. The rotational energy of the earth is decreasing steadily because of tidal friction. Fig. 9.20 : A spinning satellite 

Estimate the change in the rotational energy of the earth irl a day. It is given that the 
rotational period of the earth decreases by about 10 microseconds in a year. Assume the 
earth to be xsolid sphere. 

9.7 ANSWERS 

2. a) Each has a magnitude of 4.2 cm. 

b) i) A stone falling freely under gravity. 

ii) The motion of a block on a table when it is given a push. 

3. The required differential equation (see Eq. 7.22) would be MR = F,, where R is the 
position vector of the c.m, of the body and R is its acceleration. 

4. In Fig. 9.3 the x', y ',z' - axes are always parallel to the x,y,z - axes, whereas in Fig. 
9.7 the former continually changes its orientation with respect to the latte~. In case of 
Fig 9.3 the location of the body can be obtained only by locating o', the cam. of the 
body while in Fig. 9.7 one has to know in addition the orientation of x', y', z '- axes 
with respect of the x, y, z - axes. 

5. From Sec. 4.3.4 of Block 1 we may say that the K.E. of rotation K1 of the point mass 
ml is given by 

1 K 1  = - m l r : 0 2 '  2 

1 Similarly the K.E.s of m2 and m3 are K2 = 2m2r$d ,  

1 
K3 = 2 m3r: w2. SO the K.E. of rotation of the body is given by 

K = K I  + K Z + K 3 + . , . . .  

1 1 = - (m,~.: +m24 +m3r-: + ....) a2 = - 102. 
2 2 

1 
The expression for the K.E. of linear motion is - Mv2 and since w  is analogous to v, I 

2 
must be the rotational analogue of M. 

6. Let the mass in kg of each atom be m. Then from Eq. 7.5 we get p = m/2. Here 
r  = 1.2 x 1 0-lo rn. If the required angular speed be w, then from Eq. 9.2 and Example 1, 
the rotational K.E. is given by 

[ y  kg](1.2xLO-10m)20'. 

The translational K.E. is giv'en by 

1 
ET = 2 x - mv2 = mv2,  where v = 460 ms-l. 

2 77 



Systems o f  Particles 2 
It is given that E, = 2 ET 

(a) 

Fig. 9.21: (a) If a rotating bicycle 
wheel is lifted vertically, it swerves 
to the side; (b) the change in angular 
momentum vector for (i); (c) the 
change in angular momentum vector 
for (ii). 

or w = 6.3 x 1012 rad s-I 

dL 
7. vii) 2 =  -=la 

a? 

1 
ix) K.E. = -Id 

2 

x) Principle of conservation of angular momentum : When the net torque acting on a 
body is zero, its angular momentum remains conserved. 

xi) Angular impulse = T(t )d t  = L (12) - L ( I I ) .  

t 1 

2 
8. For (a) a hollow ball. I,.,), = - MR',  3 

2 
and (b) a solid ball, I , ,  - - MR'. - 5 

6 
Now, from Eq. 9.1 8, we get for (a), (vz,,), =? gy  

10 
and for (b) (I;:),)~ = 7 gy. 

For our problem y = 0.35m and we put g = 9.8ms-" 

SO (v$,,), = 4.1 m2 s - ~ ,  ( ~ 4 , ) ~  = 4.9 m2 s-2. The observed value of vz,,  = 4m2s-"hich 
.agrees more closely with (a). Hence the ball is liollow. 

9. From the principle of conservation of angular momentum, we get, 

2 2 R I 
Here I t  = - MR 12, I- - -MR22 and R2 = - 

5 7 - 5  2 

2n 2n 
But wl = - and q = - where T I  and T2 are the usual and changed time periods of 

T1 T2 
daily rotation of earth. 

S o  the time period of daily rotation will become 6h .  

10. a) (i) Refer to Fig. 9.21a. The direction of L is along the positive direction of 
y-axis. A vertically upward (i.e. along the positive direction of z-axis) force F 
is applied at  P. The resulting torque (r x F) about 0 is along the negative 
direction of x-axis. So the change AL in the angular momentum vector is 
along that direction (Fig. 9.21b). Accordingly the new direction will be along 
L + AL. So the wheel will swerve so that the axle moves in the ;cy-plane in 
the sense + x to ty axis. 

(ii) FoIlowing similar argument as in (i), we can draw the angular momentum 
vector L, its change AL, and the resulting vector L t AL as shown in Fig. 
9 .21~ .  So the wheel will again swerve in the xy-plane in the sense +X to -Y 
axis. 



b) If upward forces are applied at both points P and Q, then the torques due to them 
about 0 will be equal and opposite. So the resulting torque is zero. Hence there 
would be no change in L. So the axis of rotation of the wheel will not turn. 

Rigid ~ o d ~ '  Dynamics 

Terminal Questions 
1,  a) I =Ijniri2 and ri is not same for all i. So the mass of a body cannot be considered as 

concentrated at its c.m. for the purpose of computing its moment of inertia. 

b) 14 disc of thickness t ,  radius R and mass M is essentially a right circular cylinder of 
the same radius and of length t .  

But M = d 2 t  p, where p = the density of the metal of which the disc is made. 

So we see that for same mass'and thickness,,I is inversely proportional to p. Hence 
the disc made of the metal having lower density will have larger moment of inertia. 

c) When the polar icecap melts the water flows towards the equator. This leads to a 
redistribution of matter over the globe as a result of which I for the earth changes. 
But as the angular momentum of the earth remains constant its angular speed 
changes. But, w = 2WT, where T is the time period of rotation. So T also changes. 

2.  The satellite's angular speed has to change by Aw = 10r.p.m. If the angular acceleration 
a is constant then the time taken for the change is given by 

1 
Since, the satellite is cylindrical, I = - MR2, where M is the mass of the satellite and R 2 
its radius. The torque is exerted by two jets, each at a distance R from the rotational axis 
and directed perpendicular to the radius (Fig: 9.22). If F is the thrust of each jet we get, 
z = 2RF. 

( A o )  - M R 2  

. . At = 
( ) AwMR -- 
2RF - 4F 

(960 kg) x (0 .8m) 
= 10s. 

4 x 20N 

3 .  The moment of inertia of the earth about its axis of rotation is given by 

L 
I = MR2, where M = 5.97 x 1024kg, R=6.37 x 106m. 

The daily rotational period of earth is T = N h  = 86400s. Now the rotational K.E. is 
given by 

Now the relative changes in E and T are small in comparison to E and T themselves. So 
we can treat the changes as differentials& and d7: We have, 

Fig. 9.22 



Systems of Parti$es The change in Tin one year (rr 365 days) is 10 x 1@ s ,  i.e. s 

10-Ss :. The chqnge in day is dT= - = 2.7 x 1 c 8 s .  
365 

Hence, the change in rotational K..E. will be 

= - 1 . 6 ~  lOI7kg m2s-2 

So the rotational energy decreases by 1.6 x 1017 J per day. 



UNIT 10 MOTION IN NON-INERTIAL 
FRAMES OF REFERENCE 

Structure 
10.1 Introduction 

10,2 Non-Inertial Frame of Reference 

Motion Observed from a Non-Inertial Frame 

Newton's Second Law and Inertial Forces 

Weightlessness 

10.3 Rotating Frame of Reference 

Time Derivatives in Inertial and Rothting Frames 

Cenlrifugal Force 

Coriolis Force 

10.4 The Earth as a Rotating Frame of Reference 

The Variation of 8 with Latitude 

Motion on the Rotating Earth 

Foucauli's Pendulum 

1 0 3  Summary 

10.6 Terminal Questions 

10.7 Answers 

10.1 INTRODUCTION 

In the previous unit you have read about rigid body dynamics. The present unit will be the 
final one of our Elementary Mechanics course. We had introduced the concept of frame of 
reference in the very first unit of Block 1. In Unit 2 of Block 1 we introduced the idea af 
inertial and non-inertial observers. So far we have explained motion from the point of view 
of inertial observers. But as a matter of fact we live on a frame of reference (the earth) which 
is non-inertial. Moreover, we shall see that certain problems can be answered quite elegantly 
if we take the point of view of a non-inertial observer. So in this unit we shall study the 
description of motion relative to a non-inertial frame of reference. First we shall study what 
is meant by a non-inertial frame of reference. 

You must have had the following experiences while travelling in a bus. You fall backward 
when the bus suddenly accelerates and forward when it decelerates. When the bus takes a turn 
you have sensation of an outward force. We shall explain these features by introducing the 
concept of inertial forces. Thereby we shall see how Newton's second law of motion gets 
'modified in a non-inertial frame. This will be used to develop the concept of weightlessness. 

Frames attached with rotating bodies likk a merry-go-round, the earth and so on form the 
most interesting examples of non-inertial frames of reference. We shall derive the equation of 
motion of a body in such a frame of reference. Thereby we shall come across two inertial 
forces, namely, the centrifugal force and the Coriolis force. The former can be used to 
explain the action of a centrifuge. We will study a variety of applications of these forces in 
connecfion with the earth as a non-inertial frame of reference. Centrifugal force finds , 

application in studying the variation of g with the latitude of a place. 

Several natural phenomena like erosion of the banks of rivers, cyclones etc, can be explained 
using the concept of Coriolis force. Finally we shall study about Foucault's Pendulum 
experiment with a view to estabfishing the fact that the earth rotates about an 'axis passing 
through the poles. 


